Schwermetallmobilität in typischen Haldenablagerungen des ehemaligen Hüttenstandortes Helbra

Studienarbeit von

Pero Despotovic

(Matrikel-Nr. 156051)

Vorgelegt als Studienarbeit an der Technischen Universität Berlin am Fachbereich Angewandte Geowissenschaften I - Fachgebiet Lagerstättenforschung und Angewandte Geochemie im August 1999

Schwermetallmobilität in typischen Haldenablagerungen des ehemaligen Hüttenstandortes Helbra

von

Pero Despotovic

INHALTSVERZEICHNIS

Seite

1. EINLEITUNG UND ZIELSETZUNG 5				
2. LAGE DES ARBEITSGEBIETES	5			
3. GEOLOGIE	5			
3.1. Geologischer Überblick	5			
3.2. Genese der Lagerstätte	7			
3.3. Historische Produktion	8			
4. PROBENAHME UND ANALYTIK	8			
4.1. Versuchsaufbau und Durchführung	8			
4.2. Probenahme und Methodik	8			
4.3. Aufschlußmethoden und Analytik	9			
5. CHARAKTERISIERUNG DER PROBEN	9			
Kupferschiefer	10			
Graue Berge	12			
Schlacke	12			
Theisenschlämme	14			
Schwelgut	14			
6. ERGEBNISSE	14			
6.1. Varianz im Haldenmaterial	14			
6.2. Mobilisierungstypen	17			
6.3. Hydrogeochemie	18			
6.3.1. Der pH-Wert	18			
6.3.2. Elektrische Leitfähigkeit	18			
6.3.3. Grenzwertuntersuchungen	19			
6.3.4. Ionenbilanzierung und Berechnung der Aktivitäten	22			
6.3.5. Multivariate statistische Analyse der Eluate	23			
7. DISKUSSION DER ERGEBNISSE, ZUSAMMENFASSUNG UND				
AUSBLICK	27			
8. LITERATURVERZEICHNIS	31			

Titelbild: Ehemaliger Hüttenstandort Helbra, Blick auf Schlackenhalden nördlich von Hergisdorf. – Quelle: HSV, Helbraer Schlackenverwertung GmbH & Co. KG, Werbebroschüre

TABELLEN – ABBILDUNGEN - ANHANG

Tabellen

Metallmengen im Lagerstättenrevier Mansfeld-Sangerhausen	8	
Klimadaten zum Zeitpunkt der Probenahme am Standort der Lysimeterkisten		
Wichtigste primäre Mineralphasen im Kupferschiefer 1		
Wichtigste Sekundärmineralisationen im Kupferschiefer	10	
Wichtigste primäre Erzphasen im Kupferschiefer	12	
Primäre Phasen aus den Schlacken des Mansfelder Reviers	13	
Sekundärminerale aus den Schlacken des Mansfelder Reviers	13	
Korrelation von pH-Wert und elektrischer Leitfähigkeit nach Proben	19	
Korrelationsmatrix zum Einfluß der Temperatur und der Niederschlagsmenge auf		
die elektrische Leitfähigkeit (LF) und den pH-Wert in den Proben	19	
Grenzwerte für Elementgehalte im Wasser	20	
Haldenkomponenten (RFA)	A1	
Tiefenprofile in Laugungsboxen	A2	
Elementgehalte und physikalisch-chemische Parameter aus Eluaten	A3	
Nachweisgrenzen für das RFA-Meßprogramm "Powder 1"	A7	
Ionenbilanzierung, Ionenstärke, Aktivitätskoeffizienten und Aktivitäten	A8	
Korrelationsmatrix für das Kupferschiefereluat und hierarchische Clusteranalyse	A9	
Korrelationsmatrix für das Schlackeneluat und hierarchische Clusteranalyse	A10	
Korrelationsmatrix für das Theisenschlammeluat und hierarchische Clusteranalyse	A11	
Korrelationsmatrix für das Schwelguteluat und hierarchische Clusteranalyse	A12	
Korrelationsmatrix für das Eluat aus den Grauen Bergen und hierarchische		
Clusteranalyse	A13	
	Metallmengen im Lagerstättenrevier Mansfeld-Sangerhausen	

Abbildungen

Abb. 1:	Karte von Deutschland, Ausschnitt Sachsen-Anhalt mit Helbra, vergrößert	5
Abb. 2:	Geologie der Mansfelder und Sangerhäuser Mulde mit der	
	Haldenlandschaft des Kupferschieferbergbaus	6
Abb. 3:	Schematisches Profil der Grenze zwischen reduzierender Umgebung und Roter	
	Fäule Fazies im basalen Teil des Zechsteins	7
Abb. 4:	Prinzipieller Aufbau der Lysimeterkisten	8
Abb. 5:	Darstellung der Klimadaten zum Zeitpunkt der Probenahme am Standort	
	der Lysimeterkisten	9
Abb. 6:	Haldenmaterial der Rohhütte Helbra	9
Abb. 7:	Buntmetallführung des untersuchten Kupferschiefers (vier Proben) und Darstellung	
	der Metalltypen im Cu-Pb-Zn-Diagramm	11
Abb. 8:	Auf einen Kunst-Standard normierte Variationsbreite einiger Spurenelemente im	
	Bereich der Schlackenhalde Helbra deponierten Kupferschieferarm-	
	und Reicherzen	11
Abb. 9:	Hauptelement-Variation im Kupferschiefer	15
Abb. 10:	Schwermetall-Variation im Kupferschiefer	15
Abb. 11:	Hauptelement-Variation im Theisenschlamm	15
Abb. 12:	Schwermetall-Variation im Theisenschlamm	16
Abb. 13:	Hauptelement-Variation in den Grauen Bergen	16
Abb. 14:	Schwermetall-Variation in den Grauen Bergen	16
Abb. 15:	Hauptelement-Variation in der Schlacke	16
Abb. 16:	Schwermetall-Variation in der Schlacke	17
Abb. 17:	Hauptelement-Variation im Schwelgut	17
	· · ·	

Abb. 18:	Schwermetall-Variation im Schwelgut	17
Abb. 19:	Verallgemeinerte Mobilisierungstypen, die aus der Beobachtung des elementspezi-	
	fischen Vergleichs der Proben untereinander abgeleitet worden sind	17
Abb. 20:	Veränderungen des pH-Wertes im Eluat während des Beprobungszeitraumes	18
Abb. 21:	Veränderungen der elektrischen Leitfähigkeit im Eluat während des Beprobungszeit-	
	raumes	19
Abb. 22:	Ionenbilanz: Korrelation der Anionenkonzentration gegen die Kationenkonzen-	
	tration	23
Abb. 23:	Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-	
	Methode (DAVIS, 1986) für das Kupferschiefereluat	24
Abb. 24:	Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur	
	äquivalenten originalen Korrelationen im Kupferschiefereluat	24
Abb. 25:	Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-	
	Methode (DAVIS, 1986) für das Schlackeneluat	25
Abb. 26:	Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur	
	äquivalenten originalen Korrelationen im Schlackeneluat	25
Abb. 27:	Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-	
	Methode (DAVIS, 1986) für das Theisenschlammeluat	25
Abb. 28:	Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur	
	äquivalenten originalen Korrelationen im Theisenschlammeluat	26
Abb. 29:	Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-	
	Methode (DAVIS, 1986) für das Schwelguteluat	26
Abb. 30:	Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur	
	äquivalenten originalen Korrelationen im Schwelguteluat	26
Abb. 31:	Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-	
	Methode (DAVIS, 1986) für das Eluat aus den Grauen Bergen	27
Abb. 32:	Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur	
	äquivalenten originalen Korrelationen im Eluat aus den Grauen Bergen	27
Anhang 4:	Verteilung der Elementgehalte in Lysimeterkisten im Vergleich	A4
Anhang 5:	Grenzwertbetrachtungen der Eluatwässer	A5
Anhang 6:	Eh-pH-Diagramme	A6

Schwermetallmobilität in typischen Haldenablagerungen des ehemaligen Hüttenstandortes Helbra

Studienarbeit von

Pero Despotovic

1. Einleitung und Zielsetzung

Im Verbundprojekt der TU Berlin mit dem Umweltforschungszentrum Leipzig/Halle (UFZ), "Schwermetallmobilisierung und –migration in komplexen Haldenkörpern am Beispiel des Verhüttungsstandortes Helbra", entstand eine umfangreiche Datenbasis, die im Hinblick auf das Laugungsverhalten verschiedener Haldenkomponenten aus der Kupferschiefergewinnung und dessen Verhüttung qualitativ ausgewertet werden sollte und so zu einem Gesamtbild der Stoffflüsse in Haldenkörpern beitragen soll.

Dazu wurden in einem Feldversuch fünf Lysimeterkisten mit den Stoffgruppen Kupferschiefer, Theisenschlamm, Schwelgut, Schlacke und Graue Berge aufgestellt. In dieser Studienarbeit geht es um eine dreidimensionale Prozeßanalyse. In einem ersten Schritt wurden Variationen der Elementgehalte innerhalb der Stoffgruppen untersucht. Dadurch sollten die natürliche Variationsbreite und Inhomogenität der Elementkonzentrationen im Ausgangsmaterial innerhalb der Lysimeterkisten festgestellt werden. Im zweiten Schritt wurden die Elementkonzentrationen in Bezug zu einem Tiefenprofil (oben-Mitte-unten) in den Lysimeterkisten hin untersucht. Mit dem Erhalt von Eluatanalysen ergibt sich dann im letzten Schritt die Möglichkeit die Dynamik der Mobilisierung der Schwermetalle in der Zeit zu betrachten. Es wird versucht am Ende dieser Arbeit ein dynamisches Reaktionsprofil zu erstellen um damit das Gefährdungspotential von Schadstoffausträgen aus den Haldengütern zu ermitteln. Da die Menge des Eluatwassers während der Versuchsreihe leider nicht mitgemessen worden ist, und Klimadaten nur unvollständig aufgezeichnet worden sind, konnte eine vollständige quantitative Betrachtung der Schwermetallgehalte in Form einer Bilanzierung nicht durchgeführt werden.

2. Lage des Arbeitsgebietes

Der ehemalige Kupferschieferbergbau und dessen Verhüttung in Helbra befindet sich im südöstlichen Harzvorland, etwa 40 km westlich der Stadt Halle (Saale) im Land Sachsen-Anhalt im Kreis Mansfelder Land (siehe Abb. 1). Erreichbar ist das Arbeitsgebiet von Halle (Saale) aus über die Bundesstraße 80 bis Eisleben und anschließend über Landstraßen.

Die Lysimeterkisten sind in der Nähe der Halde des Sanderschachtes aufgestellt worden, da sie dort den gleichen atmosphärischen Bedingungen ausgesetzt sind wie das Originalmaterial auf den Halden. Der Sanderschacht wiederum liegt unweit der Landstraße 225, etwa 1000 m östlich von Hergisdorf.

Abb. 1: Karte von Deutschland, Ausschnitt Sachsen-Anhalt mit Helbra, vergrößert (Quelle: Deutschlandkarte; URL: http://www.stadtplan.de).

3. Geologie

3.1. Geologischer Überblick

Der folgende geologische Überblick ist JANKOWSKI (1996) entnommen. Die ältesten Gesteine im Mansfelder Land sind variszisch gefaltete Grundgebirgseinheiten (Phyllite, Magmatite) an der Wende zum Oberkarbon (Sudetische Phase; ca. 300 Ma; siehe Abb. 2). Der Hornburger Sattel und die Halle-Hettstädter Gebirgsbrücke umschließen zusammen mit der Unterharzhochfläche die Mansfelder Mulde

Abb. 2: Geologie der Mansfelder und Sangerhäuser Mulde mit der Haldenlandschaft des Kupferschieferbergbaus (aus: WAGENBRETH und STEINER, 1990).

und sind Teile des Grundgebirges. Das Untersuchungsgebiet gehört damit zur Saxo-Thuringischen Zone der Variszischen Orogenese. Während dieser Orogenese entstanden herzynisch, also NW-SE, streichende Lineamente, die dann im Oberkarbon und Unterperm reaktiviert worden sind und tektonische Becken (Mansfelder und Sangerhäuser Mulde) erzeugten. In diesen wurden anschließend Konglomerate, Sandsteine und Tonschiefer akkumuliert. Wüstenklima zur Zeit des Unterperm (Rotliegendes) führte zu einer intensiven Rotfärbung der Sedimente. Begleitet war die Beckenschüttung von subvulkanischen Intrusionen (Hallescher Quarzporphyr) und effusivem Vulkanismus.

Mit dem Ausklingen der tektonischen Bewegungen kam es nach der Saalischen Phase vor 260 Ma am Ende des Unterperms zu einer weitgehenden Einebnung des Variszischen Gebirges, so daß es zu einer Ingression des Nordmeeres nach Süden kommen konnte.

Die jüngsten kontinentalen Sedimente des Perms waren das Zechsteinkonglomerat und das sogenannte Weißliegende, das bisher als Dünensande interpretiert worden ist. Nach neueren sedimentpetrographischen Untersuchungen soll es sich nach JANKOWSKI (1996) dabei jedoch um Schelfsande handeln. Kalkkonkretionen (Caliche), die in einem Sebkha-Millieu entstanden sind, sind eingeschaltet.

In der Folge wurden organikreiche tonig-sandige Sedimente (Faulschlamm) abgelagert, der Kupferschiefer. Durch gelegentliche Abschnürungen vom Weltmeer und anschließender Eindampfung des Meerwassers kam es zu einer Abscheidung zyklischer Folgen tonig-sandiger und chemischer Sedimente. Für das gesamte Germanische Becken können vier lateral korrelierbare salinare Zyklen verfolgt werden. Der Werra-, Staßfurt-, Leine- und Aller-Zyklus. In einigen Teilen des Beckens entstanden maximal 7 Zyklen. Allen vier Hauptzyklen gemein ist, daß sie mit basalen ton- und teilweise organikreichen Sedimenten beginnen, gefolgt von Kalken und/ oder Anhydriten. Darauf folgt Stein-salz, das gelegentlich Kalisalze führt. wo die Ein-dampfung besonders weit fortgeschritten war (Staß-furt- und Leine-Zyklus). Im Normalfall bilden dann Anhydrite die Deckschichten eines jeden Zyklusses. Lokal kann es aber zu Variationen des Schemas kommen.

Der untere und mittlere Buntsandstein bilden die kontinentale Fortsetzung der Sedimentation im südöstlichen Harzvorland und sind hier in einer Folge von roten Schiefertonen, Sandsteinen und Kalk-/Rogensteinen ausgebildet. Der obere Buntsandstein und der flachmarine Muschelkalk sind nur noch lokal in zentralen Teilen der Mulde westlich von Halle (Saale) vorhanden, dürften aber weiter verbreitet gewesen und nunmehr erodiert sein. Im Anschluß war das Mansfelder Gebiet zu einem Hochgebiet geworden. Östlich des Untersuchungsgebietes kam es zu im Tertiär einsetzender Sedimentation in Subrosionssenken und darin zu Kohleablagerungen. Jüngste, auch das Untersuchungsgebiet bedeckende Ablagerungen, sind neben dem Aluvium saale- und weichseleiszeitliche Lößlehme und Terrassen.

Der Kupferschiefer zeigt am Harzrand ein umlaufendes Streichen und ein flaches Einfallen zum Zentralteil der Mansfelder Mulde. Tektonisch ist die Mansfelder Mulde weiterhin von herzynisch und erzgebirgisch streichenden Verwerfungen gekennzeichnet, die in Graben/Horst-Strukturen das Becken zergliedern und teilweise beachtliche Sprunghöhen aufweisen. Im Osten wird die Mansfelder Mulde durch die erzgebirgisch verlaufende Hornburger Tiefenstörung mit einer Sprunghöhe von über 1000 m von der Querfurter Mulde getrennt. Im Nordosten wird die Mansfelder Mulde von der Halleschen Marktplatzverwerfung begrenzt, die eine ähnlich große Sprunghöhe aufweist, jedoch herzynisch streicht. Diese Störungen wurden vom oberen Jura bis in das Tertiär (saxonische Tektonik) reaktiviert. Begleitend gab es eine starke Salztektonik, die bis heute anhält. Die Mächtigkeit des Deckgebirges über dem Kupferschiefer beträgt bis zu 1000 m. Variationen liegen neben der morphologisch-tektonisch bedingten Beckenform in der wechselnden Mächtigkeit des Steinsalzes, primären faziellen Differenzierungen und Subrosionserscheinungen begründet (JANKOWSKI, 1996).

3.2. Genese der Lagerstätte

Der Kupferschiefer gehört nach COX und SINGER (1992) zu einem Lagerstättentyp, der als sedimentgebundene stratiforme Kupferlagerstätte oder diagenetisch-sedimentäre Kupferlagerstätte bezeichnet wird. Demnach entstanden die meisten Lagerstätten dieses Typs während der Diagenese von Sedimenten unter flachmarinen und semiariden Bedingungen. Eine Vielzahl von Prozessen wird für die Anreicherung in verschiedenen Distrikten angenommen, doch charakteristisch ist die Anreicherung von Metallen an Redoxbarrieren, an denen oxische Lösungen aus Evaporiten und Redbeds, die möglicherweise aus der Kompaktion der Beckensedimente stammen, auf reduzierende Bedingungen trafen. Diese können zum einen wie im Kupferschiefer stratigraphisch gebunden sein (an Lagen, die reich an organischem Kohlenstoff sind) oder durch Mischung mit mobilen Reduktoren (reduzierende H₂S- und kohlenwasserstoffhaltige Fluide, Dzhezkazgan-Typ) zur Fixierung der Metalle führen (Abb. 3).

Abb. 3: Schematisches Profil der Grenze zwischen reduzierender Umgebung und Roter Fäule Fazies im basalen Teil des Zechsteins (1: Anhydrit, 2: Kalkstein, 3: Dolomit, 4: dolomitischer Kalkstein, 5: Sandlinsen im Kalkstein, 6: Kupferschiefer, 7: Rote Fäule Fazies, 8: transversal gelagerter Sandstein, 9: Makrofossilien, 10: bauwürdige Cu-Gehalte, 11: Cu-Mineralisation, 12: Pb-Zn-Erz, 13: Pb-Zn-Mineralisation; aus: RENTZSCH, 1974).

Syngenetische Interpretationen der Herkunft der Kupferschiefermineralisation gehen von synsedimentären schwachen Buntmetallsulfidvererzungen im sapropelitischen Fällungsmilieu während der Sedimentation des Kupferschiefers aus (nach JAN-KOWSKI, 1996). Eine epigenetische Bildung wird auch bei den Syngenetikern für die Ausbildung der Rote Fäule-Fazies und die Zonierung der Erzmineralparagenesen angenommen (Abb. 3). In einem paläohydrologischen Zirkulationssytem kam es durch aufsteigende oxidierende metallhaltige Lösungen aus dem Liegenden des Kupferschiefers in Schwellenbereichen des Kupferschieferbeckens zur oxidativen Zerstörung der Metallsulfide und damit zur Vertaubung der Metallgehalte. Bei der seitlichen und vertikalen Ausbreitung wurden die Lösungen durch organogene und sulfidische Bestandteile des Kupferschiefers reduziert, wodurch es unter spezifischen Fällungsbedingungen zu einer Ausbildung von Metallisationsgürteln mit einer typischen horizontalen und vertikalen Abfolge $Fe^{3+}-Cu^{+}-Pb^{2+}-Zn^{2+}-Fe^{2+}$ kam.

Im Zuge der alpidischen Gebirgsbildungen (saxonische Phase) in der Oberkreide kam es im Untersuchungsgebiet neben Salzbewegungen auch zur Aktivierung der hydrothermalen "edlen" Rücken (JAN-KOWSKI, 1996), die zu kluftgebundenen Mineralisationen und nochmaligen Anreicherung von Buntmetallen vor allem in Karbonatgesteinen an der Zechsteinbasis (großer Klüftungsindex, große chemische Reaktionsfähigkeit und plastischer Abschluß durch Evaporite) und im reduzierenden Kupferschiefer führten. Insgesamt muß also von einem mehrphasigen metallogenetischen Prozeß ausgegangen werden.

3.3. Historische Produktion

Über 790 Jahre, bis 1990, wurde der Kupferschiefer im südöstlichen Harzvorland in mehreren Phasen bergmännisch gewonnen. Zunächst arbeitete man am Rande der Mansfelder Mulde in obertägigem oder oberflächennahem Abbau und es entstanden kleine Halden über Schächten mit geringer Tiefe. Nachdem diese ausgeerzt worden waren, verfolgte man das Kupferschieferflöz in die Tiefe bis zu 1000 m. Als Folge entstanden große Flachhalden und Spitzhalden an tiefen Schächten. Anfang des 17. Jahrhunderts kam der Bergbau allmählich in Verfall und im Dreißigjährigen Krieg zum Erliegen. Anfang der 1950er Jahre verlegte man den Tiefbau von der nahezu ausgeerzten Mansfelder Mulde in die Sangerhäuser Mulde. Der Bergbau in der Mansfelder Mulde wurde 1969 geschlossen, trotzdem verarbeitete man das Kupferschiefererz weiter in der Rohhütte Helbra.

Gewonnen wurde das hier 20-50 cm mächtige Kupferschieferflöz. Diese geringe Mächtigkeit machte es aus technischen Gründen notwendig, mehr Gangart mitzufördern. In der Hauptsache wurden (Werra-) Zechsteinkalke, seltener Sanderze des Weißliegenden mit gewonnen und als Bergematerial aufgehaldet, soweit sie nicht aufgrund der günstigen basischen Schmelzeigenschaften mit verarbeitet worden sind (JANKOWSKI, 1996).

In der folgenden Tabelle sind die Mengenbereiche der gewonnenen Metalle im Lagerstättenrevier Mansfeld-Sangerhausen dargestellt:

3,7 Mio t	Cu
0,6-0,7 Mio t	Pb, Zn
10.000-100.000 t	V, As, Mo, Ag, Ni, Co
1.000-10.000 t	Se, Rh, Sb, Cd, Tl, Ge
100-1.000 t	Te, Hg, Bi
<100 t	Au

 Tab. 1: Metallmengen im Lagerstättenrevier Mansfeld-Sangerhausen (JANKOWSKI, 1996).

Nähere Angaben zur Mineralogie und zur Elementverteilung im Kupferschiefer folgen im Abschnitt 5 (Charakterisierung der Proben).

4. Probenahme und Analytik

4.1. Versuchsaufbau und Durchführung

Zur Erzielung praxisnaher Ergebnisse wurden die Versuche im halbtechnischem Maßstab in Lysimeterkisten aus Kunststoff ausgeführt. Lysimeterversuche bieten die Möglichkeit, die Mobilität der Schwermetalle unter natürlichen Bedingungen, denen die Haldenkörper auch ausgesetzt sind, "on-site", nicht jedoch "in-situ", quasi in einem isotropen Körper ablaufen zu lassen. Die fünf Lysimeterkisten wiesen ein Fassungsvermögen von jeweils ca. 30 l bei Abmessungen von 0,5 x 0,4 m und einer Höhe von 0,15 m auf. Die Basisentwässerung der Lysimeter erfolgte über eine 3 cm mächtige Sanddränageschicht (Abb. 4).

Abb. 4: Prinzipieller Aufbau der Lysimeterkisten.

4.2. Probenahme und Methodik

Die Proben für die Beschickung der Lysimeterkisten sind Mischproben in Originalkörnung aus Halden in der Umgebung des Verhüttungsstandorts Helbra. Zur Untersuchung der stofflichen Varianz sind vom Autor im Rahmen seiner Tätigkeit als studentische Hilfskraft an der TU Berlin von jeder Komponente vier RFA-Präparate hergestellt worden. Die Entnahme der Eluate erfolgte in einer relativen zeitlichen Regelmäßigkeit über Dr. P. Schreck vom UFZ Halle, Sektion Hydrogeologie. Der zeitliche Ablauf der Probenahme und die Klimadaten zum Zeitpunkt der Probenahme am Standort der Lysimeterkisten ist der Tabelle 2 und der Abbildung 5 zu entnehmen.

Probe	Zeitraum	mittl. Temp. [°C]	Niederschlag [mm]
1	01.09.96- 20.09.96	12	-
2	21.09.96- 25.10.1996	10	37
3	26.10.96- 20.11.1996	7	58
4	21.11.96- 20.12.1996	0	51
5	21.12.96- 16.01.1997	-8	2
6	17.01.97- 06.02.1997	-2	15
7	07.02.97- 27.02.1997	3	57

Tab. 2: Klimadaten zum Zeitpunkt der Probenahme am Standort der Lysimeterkisten.

Abb. 5: Darstellung der Klimadaten zum Zeitpunkt der Probenahme am Standort der Lysimeterkisten (siehe Tab. 2).

Für die tiefenorientierte Untersuchung innerhalb der Lysimeterkisten wurden 3 Proben in jeder Lysimeterkiste (oben-Mitte-unten) nach mündlichen Angaben von Herrn Dr. Schreck bei trockenem Wetter am 9.10.1997 entnommen. Makroskopisch festellbare Phänomene sind der Charakterisierung der Proben im Abschnitt 5 hinzugefügt worden.

4.3. Aufschlußmethoden und Analytik

Die Feststoffanalytik ist, wie schon erwähnt, vom Autor dieser Studienarbeit im Rahmen des Projektes als studentische Hilfskraft an der TU Berlin durchgeführt worden und umfaßte insgesamt 40 Komponenten, davon 10 Hauptkomponenten und 30 Nebenund Spurenelemente. Zur Probenaufbereitung wurde die Probenmenge geviertelt verringert und mit einer Achatmühle analysenfein gemahlen (< 63 μ m). Die Multielementanalyse erfolgte mit der Röntgenfluoreszenzanalyse (RFA). Dafür wurde ein Gerät der Marke Phillips PW 1404/10 mit automatischem Probenwechsler und dem Meßprogramm "Powder 1" im Geochemischen Gemeinschaftslabor des Fachgebiets Lagerstättenkunde und Angewandte Geochemie am Fachbereich Bauingenieurwesen und Angewandte Geowissenschaften der TU Berlin eingesetzt. Die Multielementbestimmung erfolgte unter Einbeziehung attestierter Standardproben. Folgende Oxide und Elemente wurden gemessen:

Hauptelemente: SiO_2 , Al_2O_3 , Fe_2O_3 , MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅, SO₃

Neben- und Spurenelemente: Ag, As, Ba, Bi, Br, Cd, Cl, Co, Cr, Cs, Cu, F, Ga, Hg, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sn, Sr, Th, Tl, U, V, W, Zn und Zr.

Details zu den Nachweisgrenzen der RFA-Analytik befinden sich im Anhang 7. Analytische Probleme treten bei dem RFA-Meßprogramm "Powder 1" für Silikate auf, so daß SiO₂ oft nicht vollständig erfaßt wird (Matrixproblem) und damit die Gesamtsumme der Elemente nicht 100 Gew.-% erreichen kann. Daneben müssen die Ergebnisse für die Elemente As, Cd, Hg und in einigen Fällen Th, Tl und U als semiquantitativ betrachtet werden, da die in den Preßtabletten vorhandenen Konzentrationen dieser Elemente im unteren Bereich der Bestimmungsgrenzen der benutzten RFA liegen. Zudem mußten aufgrund der sehr hohen Metallgehalte des Theisenschlamms und des Schwelguts diese Proben 1:10 mit Quarzpulver verdünnt werden. Die hydrochemischen Untersuchungen an den Eluaten wurden vom UFZ (Bad Lauchstädt) und am Geochemischen Gemeinschaftslabor des Fachgebietes Angewandte Geochemie der TU Berlin durchgeführt. As-Gehalte wurden mittels AAS-Graphitrohrtechnik bestimmt, Alkaliund Erdalkaligehalte über Ionenchromatographie und F- über ionensensitive Elektroden am UFZ und weitere Kationen durch die Flammen-AAS an der TU Berlin. Andere Parameter wie der pH-Wert und die elektrische Leitfähigkeit wurden vom UFZ gemessen. Nähere Angaben zu dieser Analytik können an dieser Stelle nicht gemacht werden.

5. Charakterisierung der Proben

Als Inputmaterial zur Befüllung der Lysimeter wurden Kupferschieferarmerze, Bergematerial, Schlacke, Theisenschlamm und Schwelgut ausgewählt. Dominierendes Haldenmaterial der Rohhütte Helbra sind die Schlacken mit 80% des gesamten Haldenmaterials von schätzungsweise 50 Mio t (SCHRECK, 1997; siehe Abb. 6).

Abb. 6: Haldenmaterial der Rohhütte Helbra (Angaben in %; nach SCHRECK, 1997).

Der Grund für die Dominanz der Schlackenhalden liegt in der schlechten Aufbereitbarkeit des Kupferschiefers aufgrund der geringen Größe der Erzminerale (< 5 μ m) und der geringen Mächtigkeit des Kupferschieferflözes, so daß weniger mineralisierte Bereiche des Hangenden und Liegenden mit abgebaut werden mußten. Das Aufbereitungsverhältnis Rohkupfer zu Schlackenanfall betrug etwa 1:40. Daneben gibt es auch mittelalterliche Halden, Eisensau-Halden (Fe-, Mo- und V-angereicherte Eisenschlacken), Bauschutthalden und alte Hüttenstandorte, die auch Gefahrenpotentiale darstellen können.

Kupferschiefer (Cu-S)

Der Kupferschiefer ist ein feinkörniger und feinschichtiger, bitumenreicher Tonmergel bis Mergelstein. Sein Gefüge wird durch die Verteilung der Karbonate, Tonminerale, klastischen Bestandteile und Bitumengehalt bestimmt. Schichtung und Bitumenführung nehmen mit fortschreitender Sedimentation ab. Die Korngrößen der gesteinsbildenden Minerale (100-200 µm) sowie der Karbonatanteil nehmen nach dem Hangenden hin zu. Besonders typisch sind die feindispersen Verwachsungsverhältnisse der Erzminerale, so daß statt über eine herkömmliche Schwimmaufbereitung das Erz in einem energieaufwendigen Schmelzprozeß im Schachtofen zu einem Kupferstein geschmolzen wurde (TENHAEFF, 1993). KNITZSCHKE (1966) erwähnt einen Inkohlungsgrad für die organische Substanz im Kupferschiefer, der vorwiegend im Steinkohlenbereich (Gas- und Fettkohlen) liegt. Desweiteren ergaben Untersuchungen, daß das lösliche Bitumen gegenüber dem Festbitumen mengenmäßig stark zurücktritt (2-15% des organischen Kohlenstoffs liegt als lösliches Bitumen vor). Untergeordnet treten Graphit und Asphalt auf.

Das Kupferschieferflöz wird im Mansfelder-Sangerhäuser Revier nach der Farbe, der Härte und dem mikroskopischen Gefügebefund in Flözlagen eingeteilt (in Klammern: durchschnittliche Mächtigkeit nach KNITZSCHKE, 1966):

Schwarze Berge	(12 - 17 cm)
Schieferkopf	(10 - 12 cm)
Kammschale	(2,5-4 cm)
Grobe Lette	(6 - 9 cm)
Feine Lette	(2 - 4 cm)

Die gute Spaltbarkeit in Richtung der Schieferung (eigentlich: Schichtung) wird nach KNITZSCHKE (1966) vor allem durch parallel zur Schichtung eingelagerten Glimmerblättchen hervorgerufen.

Mineralogie

Mineralogisch kennzeichnend für den Kupferschiefer sind nach verschiedenen Autoren (MATHEIS UND JAHN (1996), KNITZSCHKE (1966) und JAN-KOWSKI (1996)) die in der Tabelle 3 aufgeführten Phasen. Da es sich ja beim Kupferschiefer um einen bituminösen Mergel handelt, überwiegen Karbonate, Quarz und Tonminerale. Häufiger treten auch Sulfate wie Gips und Anhydrit auf. Akzessorisch sind Zirkon, Apatit, Anatas und Turmalin vertreten.

Mineral	Formel
Kalzit	CaCO ₃
Dolomit	CaMg(CO ₃) ₂
Quarz	SiO ₂
Feldsnäte	KalSi ₃ O ₈ ; NaAl ₃ Si ₃ O ₈ -
reluspate	CaAl ₂ Si ₂ O ₈
Biotit	K(Mg,Fe) ₃ (OH) ₂ (Al,Fe)Si ₃ O ₁₀
Kaolinit	$Al_4(OH)_8Si_4O_{10}$
Illit	$K_{0,7}[Si_{3,3}Al_{0,7}]Al_2O_{10}(OH)_2$
Chlorit	(Mg,Fe,Al) ₆ (OH) ₈ (Al,Si) ₄ O ₁₀
Gips	CaSO ₄ *2H ₂ O
Anhydrit	CaSO ₄
Zirkon	ZrSiO ₄
Turmalin	Bor-Silikat (Mischkristall)
Apatit	$Ca_5(F,OH)(PO_4)_3$
Rutil	TiO ₂
Fluorit	CaF ₂
Anatas	TiO ₂

Tab. 3: Wichtigste primäre Mineralphasen im Kupferschiefer nach KNITZSCHKE (1966), MATHEIS UND JAHN (1996) und * JANKOWSKI (1996).

Die Kenntnis der sekundären Phasen hilft bei der späteren Interpretation der Mobilisierungs- und Fixierungsvorgänge und sind daher desgleichen an dieser Stelle aufgelistet (Tab. 4).

Mineral	Formel
Azurit	$Cu_3(CO_3)_2(OH)$
Malachit	$Cu_2(CO_3)(OH)_2$
Chalkanthit	CuSO ₄ *5H ₂ O
Anhydrit	CaSO ₄
Gips	CaSO ₄ *2H ₂ O
Annabergit	$Ni_3(AsO_4)_2*8H_2O$
Erythrin	$Co(AsO_4)_2 * 8H_2O$
Pseydomalachit	$Cu_5((OH)_2PO_4)_2$
Halit	NaCl
Brochantit	$Cu_4(SO_4)(OH)_6$
Embolit	Ag(Br,Cl)
Connelit	$Cu_{19}Cl_4(OH)_{32}(SO_4)*2H_2O$
Gordait	Na(Zn,Cu) ₄ (OH) ₆ (SO ₄)*6H ₂ O
Serpierit	$Ca(Cu,Zn)_4(OH)_6(SO_4)_2*3H_2O$
Anglesit	PbSO ₄
Coronadit	XMnO ₁₆ ; X=K ₂ , Ba, Pb, H ₂ O
unbenannt	amorphes Zn-Pb-Sulfat

Tab. 4: Wichtigste Sekundärmineralisationen im Kupferschiefer nach MATHEIS und JAHN (1996).

Elementverteilungsmuster im Kupferschiefer

Bei der Vielzahl von nachgewiesenen Spurenelementen, enthält der Kupferschiefer nach JANKOW-SKI (1996) insgesamt 52 quantitativ bestimmte Elemente. In einem sehr aufwendigen Aufbereitungsprozeß wurden aus diesen Erzen insgesamt 20 Grundstoffe gewonnen. Der Kupferschiefer hat nach KNITZSCH- KE (1966) und JANKOWSKI (1996) folgende chemische Zusammensetzung (mit eigenen Messungen):

Hauptelemente [Gew.-%]:

SiO ₂ :	30 - 39	(23 – 26)
Al_2O_3 :	15 - 24	(7,7 – 8,4)
Fe ₂ O ₃ :	3 – 5	(2, 6 - 2, 7)
MgO:	1 – 5	(3, 4 - 4, 4)
CaO:	4 - 14	(10, 0 - 10, 9)
SO ₃ :	0,5 - 3,5	(2, 8 - 4, 0)
Corg:	2 - 14	

Außer für SiO₂ und Al₂O₃ liegen die eigenen Messungen in einem vergleichbaren Bereich. Dieses könnte möglicherweise für das SiO₂ in der Analytik begründet sein (siehe Abschnitt 4.3: Aufschlußmethoden und Analytik), für Al₂O₃ kann eventuell von einer natürlichen Variation der Armerze, die hier beprobt worden sind, ausgegangen werden. Armerze sind meist die oberen Bereiche des Kupferschieferflözes, in denen es zu einer Abnahme der Tonminerale, die ein Hauptträger des Aluminiums sind, kommt.

Hauptmetalle [Gew.-%]:

Cu:	0,2 – 2,9	(0, 4 - 0, 6)
Pb:	0,4 - 0,9	(0, 4 - 0, 5)
Zn:	0,5 – 1,9	(1,0-1,1)

Das im Experiment eingesetzte Kupferschiefer-Armerz des untersuchten Gebietes kann aufgrund der Buntmetallgehalte dem Zink-dominanten Metalltyp zugeordnet werden. Dieses geht aus der Darstellung der Kupfer-Blei-Zink-Gehalte im Vergleich zu durch KNITZSCHKE (1966) durchgeführten generalisierenden Untersuchungen im Mansfelder und Sangerhäuser Revier hervor (siehe Abb. 7).

Abb. 7: Buntmetallführung des untersuchten Kupferschiefers (vier Proben) und Darstellung der Metalltypen im Cu-Pb-Zn-Diagramm (nach KNITZSCHKE, 1966).

Im gesamten Becken dominiert nach KNITZSCHKE (1966) der Zink-Typ mit 43,5% und der Kupfertyp mit 43,5%. Der Bleityp stellt 8,7% der regionalen Verteilung der Kupferschiefererze des Mansfelder und Sangerhäuser Reviers dar, der Cu-Pb-Zn-Mischtyp 4,3%. RENTZSCH (1974) fand im Kupferschiefer ein Verhältnis Cu : Pb : Zn = 1 : 1,6 : 3,4.

Spurenmetalle/ -elemente:

MATHEIS und JAHN (1996) haben die Spurenelementgehalte des Kupferschiefers mit einem Kunst-Standard für Schwarzschiefer verglichen (siehe Abb. 8, nächste Seite). Dabei haben sie festgestellt, daß der Konzentrationsbereich des Kupferschiefers der Sangerhäuser Mulde und der Kupferschiefer-Armerze (Ausschläge) sich in dessen Variationsbreite befindet, jedoch allgemein höhere Gehalte an Spurenelementen führt. Auffällig war nur eine Abreicherung an Brom und Thorium. Angereichert dagegen waren beide Kupferschieferproben an Zinn, Wolfram und Zink.

Abb. 8: Auf einen Kunst-Standard (HAMMER et al., 1988) normierte Variationsbreite einiger Spurenelemente aus im Bereich der Schlackenhalde Helbra deponierten Kupferschieferarm- und Reicherzen (aus: MATHEIS und JAHN, 1996).

HAMMER, et al. (1988) konnte aufgrund von Berechnungen von Korrelationskoeffizienten im Kupferschiefer der Sangerhäuser Mulde Hinweise zur Bindungsform der Spurenelemente erlangen. Demnach konnte eine vorwiegend detritisch-tonmineralogisch gebundene Elementassoziation (positive Korrelation mit Th, negative mit Corg; z.B. Na, Ge, K, Ga, Ti), eine biogen-organophile bzw. sulfidisch gebundene Elementvergesellschaftung (negative Beziehung zu Th, positive zu Corg; z.B. Se, V, Cr, SEE) und eine karbonatisch gebundene Gruppe chemischer Elemente (Sr, Mn) festgestellt werden. Als Besonderheit zeigt der Kupferschiefer der Sangerhäuser Mulde in der Beckenfazies deutlich höhere Co/Ni-Verhältnisse als andere Schwarzschiefer (0,31 - 4,92). In der folgenden Tabelle 5 sind die im Kupferschiefer nach KNITZSCHKE (1966), MATHEIS und JAHN (1996) und JANKOWSKI (1996) angetroffenen Erzphasen aufgeführt worden.

Mineral	Formel
gediegen Silber	Ag
Bornit	Cu ₅ FeS ₄
Chalkopyrit	CuFeS ₂
Pyrit	FeS ₂
Arsenopyrit	FeAsS
Bravoit	$(Fe, Ni, Co)S_2$
Chalkosin	Cu ₂ S
Covellin	CuS
Tetraedrit*	$Cu_3SbS_{3,25}$
Tennantit*	$Cu_3AsS_{3,25}$
Enargit	Cu_3AsS_4
Galenit	PbS
Idait	Cu ₅ FeS ₆
Linneit	Co_3S_4
Markasit	FeS ₂
Millerit	NiS
Neodigenit	Cu ₂ S
Pyrrhotin	FeS
Sphalerit	ZnS
Stromeyerit	CuAgS
Hämatit	Fe ₂ O ₃
Magnetit	Fe ₃ O ₄

Tab. 5: Wichtigste primäre Erzphasen im Kupferschiefer nach KNITZSCHKE (1966), MATHEIS UND JAHN (1996) und * JANKOWSKI (1996).

Geht man näher auf die Bindungsformen der Spurenelementgehalte ein, so stellt man nach JAN-KOWSKI (1996) fest, daß Gold, Selen und Uran am unmittelbaren Rand der Oxidationsvertaubungen an stark inkohlten organischen Substanzen gebunden sind. In der Horizontale anschließend folgen eisenfreies Kupfer als Chalkosin und Silber als Substitution in Kupfermineralen und in gediegener Form. Die nächste, beckentiefere und reduzierendere Zone wird von Kupfer-Eisen-Sulfiden (Chalkopyrit und Bornit) gebildet in deren Paragenese auch Nickel und Kobalt als Substitution für das Eisen (Bravoit, Linneit, Millerit) auftreten. Die Haupt-Kupfer-Mine-ralisation liegt in der Übergangszone zwischen der Schwellenlage mit Oxidationsfazies und dem Beckenbereich mit stärker reduzierenden Bedingungen in Form von Chalkopyrit-Bornit. Arsen und Antimon treten hier als selbständige Spurenminerale (Tetraedrit und Tennantit) auf. Vanadium und Molybdän gehen in dieser Zone bevorzugt adsorptive Bindungen mit organischen Bestandteilen wie Bitumina ein. Die beckentiefste Fazies ist gekennzeichnet durch hohe Anteile an organogenem Kohlenstoff und durch starke reduzierende Bedingungen. In diesem Milieu kam zur Ausscheidung von Galenit und Sphalerit mit substitutionellem Einbau von Thallium in Bleiglanz und Cadmium im Sphalerit. Zum anderen ist hier Pyrit die dominierende Erzphase.

Allgemein zeigt sich, daß die meisten Gehaltsmaxima der Haupt- und Spurenmetalle in den unteren Flözlagen auftreten. Festzustellen ist auch, daß es neben der vertikalen Element-Zonierung in den Flözlagen auch eine laterale Elementverteilung in den Kupferschieferbecken gibt. In sulfidischer und organogener Bindung liegen Elemente mit bevorzugt chalkophilem Charakter. In den gesteinsbildenden Komponenten des Kupferschiefers (Tonminerale, Karbonate) sind bevorzugt Elemente mit lithophilem Verhalten angereichert (JANKOWSKI, 1996). In der vorliegenden Untersuchung von Haldenmaterial werden die Kupferschieferkomponenten auch "Armerze", "schwarze Berge" oder "Ausschläge" genannt.

Graue Berge (Gr.B.)

Als "Graue Berge" werden das Hangende des Kupferschiefers, der Zechsteinkalk und Anhydrit, sowie Sandsteine des Liegenden (Weißliegendes) bezeichnet, die aufgrund der schon erwähnten Förderungsbedingungen mitgewonnen und als grobstückige Nebengesteine aufgehaldet werden mußten.

Schlacke (Schl)

Unter Schlacken versteht man oxidische Schmelzprodukte, in denen sich im Verhüttungsprozeß die Gangart und Elemente mit besonderer Affinität zu Sauerstoff ansammeln. Hauptsächlich entstehen Ca-Mg-Silikate in einer kieselsäurereichen Glasmatrix. Aluminiumoxid, Alkalioxide, sowie S-Gehalte sind nur in geringen Mengen vertreten. Die Mansfelder Schlacke weist nach EISENÄCHER & JÄGER (1997) folgende Hauptelementgehalte auf (Klammern: eigene Messungen):

43 – 48 Gew.%	(31 – 32)
15 – 17 Gew.%	(8 - 9)
16 – 20 Gew.%	(13 - 14)
4 – 5 Gew.%	(4 – 5)
2 – 3 Gew.%	(3 – 4)
	43 – 48 Gew.% 15 – 17 Gew.% 16 – 20 Gew.% 4 – 5 Gew.% 2 – 3 Gew.%

Die geringeren Konzentrationen bei den eigenen Messungen sind durch Messung mit der RFA-Pulvertablette bedingt, die vor allem das SiO₂ nicht vollständig erfassen kann. Demnach entspricht die Mansfelder Schlacke chemisch basischer Lava und zeigt durch das teilweise Verkippen im geschmolzenen Zustand auch eine Pahoehoe-Struktur. Diese Art der Verkippung führte auch zu einer sehr hohen Klüftigkeit der Haldenkörper, da zum einen bei schneller Verkippung die Schlacke zu einem grünlichen bis bräunlichen Glas erstarrt, das infolge der entstehenden Spannungen zu kleinen, scharfkantigen Stücken zerfällt. Zum anderen sorgt die lagenweise Verkippung für einen zwiebelschalenmodell-artigen Aufbau der Halden. Bei geringeren Abkühlungsgradienten kommt es zu Entglasungen und zur Bildung von strahlig von einem Kristallisationskeim ausgehenden nadeligen Augiten (nach EISENÄCHER & JÄGER, 1997). Die Primärmineralogie der Schlacken nach WITZKE (1997) findet sich in Tabelle 6:

Phase	Formel
Fayalit	Fe_2SiO_4
Diopsid	CaMgSi ₂ O ₆
Hardystonit/Aekermanit	Ca ₂ (Zn,Mg)Si ₂ O ₇
Augit*	CaMgSi ₂ O ₆
Melilith* (selten)	(Ca,Na) ₂ (Mg,Al,Fe)Si ₂ O ₇
Willemit	Zn_2SiO_4
Erzmi	inerale
gediegen Kupfer	Cu
Messing	(Cu, Zn)
gediegen Blei	Pb
unbenannt	Cu-Sn-Phase
Djurleit	$Cu_{31}S_{16}$
Digenit	Cu ₉ S ₅
Bornit	Cu ₅ FeS ₄
Sphalerit	ZnS
Chalkopyrit	CuFeS ₂
Galenit	PbS

Tab. 6: Primäre Phasen aus den Schlacken des Mansfelder Reviers (nach WITZKE, 1997, * nach EISENÄCHER & JÄGER, 1997)

Die Kupferanteile der Schlacke liegen in Grössenordnungen < 1 mm als dispers verteilte Sulfidtröpfchen vor. Diese sind allseits von Schlackenmaterial umschlossen und nur an Bruchkanten frei der Verwitterung zugänglich (nach EISENÄCHER & JÄGER, 1997).

Die Schlacke enthält nach SCHRECK (1997) durchschnittlich etwa 50 ppm Uran, was nach eigenen Messungen bestätigt werden konnte (41-47 ppm). Der Zerfall des Urans zu ²²⁶Ra liefert eine Gammastrahlung und eine spezifische Aktivität von 470-700 Bq/Kg TM und Ortsdosisleistungen von 0,45 μ Sv/h (Hsv, 1995; EISENÄCHER & JÄGER, 1997). Durch weiteren Kernzerfall bildet sich das radioaktive Edelgas Radon ²²²Rn, das aus der Schlacke entweicht und damit zusätzlich ein Gefährdungspotential darstellt (SCHRECK, 1997).

Die wichtigsten Sekundärmineralbildungen in der Kupferschlacke werden in der folgenden Tabelle 7 dargestellt (nach WITZKE, 1997):

Phase	Formel
Kupfer	Си
Silber	Ag
Blei	Pb
Schwefel	S
Acanthit	Ag ₂ S
Covellin	CuS
Cotunnit	PbCl ₂
Atacamit (Klino-)	Cu ₂ (OH) ₃ Cl
Connellit	$Cu_{19}Cl_4SO_4(OH)_{32}*3H_2O$
Diaboleit	$CuPb_2Cl_2(OH)_4$
Boleit	Ag ₉ Cu ₂₄ Pb ₂₆ Cl ₆₂ (OH) ₄₈
Gordait	Zn ₄ Na(OH) ₆ Cl(SO ₄)*6H ₂ O
Phosgenit	Pb ₂ CO ₃ Cl ₂
unbenannt	Pb-Cu-Oxichlorid
unbenannt	Pb-Oxichlorid
Cuprit	Cu ₂ O
Tenorit	CuO
Zinkit	ZnO
Lithargit	α-PbO
Massicotit	β-PbO
Spangolit	$Cu_6Al(OH)_{12}Cl(SO_4)*6H_2O$
unbenannt	"grüner Rost"
Calcit	CaCO ₃
Aragonit	CaCO ₃
Cerussit	PbCO ₃
Malachit	$Cu_2(CO_3)(OH)_2$
Hydrocerussit	Pb ₃ (CO ₃) ₂ (OH) ₂
Brianyoungit	$Zn_{12}(CO_3)_3(SO_4)(OH)_{16}$
Monohydrocalcit	CaCO ₃ *H ₂ O
Palmierit	$(K,Na)_2Pb(SO_4)_2$
Anglesit	PbSO ₄
Linarit	$CuPb(SO_4)(OH)_2$
Elyit	$CuPb_4(SO_4)(OH)_8$
Antlerit	$Cu_3(SO_4)(OH)_4$
Brochantit	$Cu_4(SO_4)(OH)_6$
Jarosit	$KFe_3(SO_4)_2(OH)_6$
Lanarkit	$Pb_2O(SO_4)$
Gips	CaSO ₄ *2H ₂ O
Posnjakit	$Cu_4(SO_4)(OH)_6*H_2O$
Langit	$Cu_4(SO_4)(OH)_6*2H_2O$
Ktenasit	$(Cu, Zn)_5(SO_4)_2(OH)_6*6H_2O$
Namuwit	$(Zn, Cu)_4(SO_4)(OH)_6*4H_2O$
Serpierit	$Ca(Cu,Zn)_4(SO_4)_2(OH)_6*3H_2O$
Chalcomenit	Cu(SeO ₃)*2H ₂ O
unbenannt	$Pb_4O_3(SO_4)*H_2O$
unbenannt	Cu-K-Sulfat
Ludlockit	(Fe,Pb)As ₂ O ₆
Vivianit	$Fe_3(PO_4)_2 * 8H_2O$
unbenannt	CuHAsO ₄ ?
unbenannt	Cu-Cl-Arsenat?

Tab. 7: Sekundärminerale aus den Schlacken des Mansfelder Reviers (nach WITZKE, 1997).

Theisenschlämme (Thei)

Bei der Verhüttung des Kupferschiefers in der Rohhütte Helbra fielen aus der Gaswäsche der Gichtgase große Mengen an in Wasser suspendierten, eingedickten und dann deponierten Flugstäuben (Theisenschlamm) an. Die geschätzte Menge beträgt 220 000 Tonnen. Die Partikelgröße beträgt <0,1 μ m. Charakteristisch für die Theisenschlämme sind nach MATHEIS und JAHN (1996) hohe Blei- und Zn-Gehalte, die in den Hauptphasen sulfidisch, sulfatisch oder oxidisch ausgebildet sind:

Metallsulfide:	ZnS	31,3 Gew%
	PbS	9,2 Gew%
	Cu_2S	1,4 Gew%
	FeS	1,7 Gew%
Metallsulfate:	K ₂ SO ₄	1.9 Gew%
	$CaSO_4$	3.4 Gew%
	MgSO ₄	2.1 Gew%
	NaSO ₄	0.5 Gew%
	PbSO ₄	6,6 Gew%
Oxide:	PbO	3.8 Gew%
	Al ₂ O ₃	4.0 Gew%
	SnO_2	1,6 Gew%
	Sb_2O_3	0.6 Gew%
	SiO ₂	17.0 Gew%
	Bi_2O_3 , l	HgO, MnO je 0,1 Gew%
Rest: C		11,0 Gew%

lest:	C	11,0 Gew%
	SO_4^{2-}	1,5 Gew%
	F -	0,5 Gew%
	Cl -	0,3 Gew %

Besonders auffällig ist neben den sehr hohen Metallgehalten der Corg-Reichtum des Theisenschlammes. Zudem liegt der organische Kohlenstoff nach MARQUARDT (1997) zum großen Teil in Form von polyzyklischen aromatischen Kohlenwasserstoffen (PAKs) vor, die eine zusätzliche und besondere Schadstoffklasse darstellen, auf die in dieser Studie nicht näher eingegangen wird.

Eigene RFA-Messungen ergaben für Al_2O_3 23-25 Gew.-%; für K₂O, Na₂O und CaO jeweils 6-10 Gew.-%; für SO₃ 29-35 Gew.-%. Die Metallgehalte wurden mit Pb 8,8-10,0 Gew.-%; Zn 7,5-10,3 Gew.-%; Cu 0,9-1,0 Gew.-% und Arsen bei 0,6 Gew.-% festgestellt. Daneben treten in größeren Konzentrationen Selen, Kadmium, Thallium, Rhenium, Quecksilber und Germanium auf (vgl. Anhang 1).

Weiterhin stellt sich als besonders problematisch das Vorhandensein von radiotoxischem ²¹⁰Po dar und die damit verbundene Strahlungsintensität von 21900 Bq/Kg TM. Ursprünglich wurde der Theisenschlamm der Bleihütte in Hettstedt als Rohstoff zur Metallgewinnung zugeführt. Nach Stillegung der Bleihütte mußte das Material deponiert werden (TENHAEFF, 1993). Dieses geschah vornehmlich auf Schlackenhalden, so daß aufgrund dessen Klüftigkeit, diese mit dem feinen Theisenschlamm durchsetzt sind.

Schwelgut (Schw)

Das Schwelgut ist ein zur Verminderung des Gehaltes an organischem Kohlenstoff getemperter Theisenschlamm. Dadurch enthält das Schwelgut ähnliche Charakteristika wie der Theisenschlammm, was die Metallführung angeht, ist jedoch gegenüber diesem durch die Überführung des organischen Kohlenstoffs in die Gasphase relativ angereichert. Dieses zeigt sich im Besonderen im Arsen-Gehalt, der von 0,6 Gew.-% auf 1,2 Gew.-% steigt.

6. Ergebnisse

Zum Zwecke der besseren Übersicht wird hier nur auf die Elemente Natrium, Kalium, Magnesium, Kalzium, das Halbmetall Arsen, sowie die Schwermetalle Kadmium, Kobalt, Kupfer, Mangan, Nickel, Blei und Zink eingegangen. Desgleichen wird der Schwefel, der ein wichtiges Anion im Eluat stellt, betrachtet.

6.1. Varianz im Haldenmaterial

Zunächst wurde die Varianz der Elementverteilungen innerhalb des für die Eluierungskisten genutzten Haldenmaterials dahingehend untersucht, ob die im nächsten Abschnitt 6.2. zu untersuchenden Teufenvariationen Ergebnisse von Mobilisierungsvorgängen sind oder Auswirkungen einer Schichtungsvarianz bzw. Inhomogenität beim Beaufschlagen Kisten darstellen. Dieses sind der relative Betrachtungen, die für die Gefährdungsabschätzungen keine Rolle spielen. Die Absolutgehalte werden im Abschnitt 6.3.3. unter dem Gesichtspunkt der Grenzwertbetrachtungen in den Eluaten besser berücksichtigt werden.

Um die einzelnen Elemente in den unterschiedlichen Proben vergleichen zu können, sind zunächst ausgehend von den RFA-Rohdaten die arithmetischen Mittelwerte (mean), die Standardabweichung, Minima und Maxima gebildet worden (Anhang 1). Für die graphische Darstellung in Boxplots mit einem Median, der jeweils zweifachen Standardabweichung mit den Minima und Maxima wurden alle Elementgehalte in jeder Probe auf den arithmetischen Mittelwert normiert. Dieses gibt die Varianz der Gehalte in den Proben gut wieder und erlaubt diese untereinander zu vergleichen. Diese Boxplots sind dann mit den Daten aus der teufenabhängigen Beprobung in den Lysimeterkisten nach Ablauf des Lysimeterversuchs, wiederum mittelwertnormiert, kombiniert worden.

Bemerkt werden sollte noch, daß nur vier Proben pro Stoffklasse untersucht worden waren, so daß die statistische Sicherheit eher gering ist.

Kupferschiefer

Abb. 9: Hauptelement-Variation im Kupferschiefer.

Der Kupferschiefer zeigt für die Elemente Schwefel eine sehr starke und für Natrium, Arsen, Kobalt und Kupfer eine noch bedeutende Variation im Ausgangsmaterial. Sehr schiefe Varianzen treten für die Elemente Magnesium, Natrium, Arsen und Kadmium auf, die dadurch eine besondere Variabilität innerhalb des Ausgangsmaterials zeigen (siehe Abb. 9 und 10). Gleichzeitig befinden sich die nach erfolgter Laugung gemessenen Schwefelgehalte im Bereich der Variation im Ausgangsmaterial. Daher ist dieses Element im Hinblick auf Mobilitätsbetrachtungen als nicht kritisch im Kupferschiefer zu bewerten, da die natürliche Variabilität einen großen Teil der Variationen erklärt. Für die meisten anderen Parameter ergeben sich, mit Ausnahme des Kupfers, schwache aber feststellbare Verlagerungen im Tiefenprofil nach Versuchsabschluß.

Abb. 10: Schwermetall-Variation im Kupferschiefer

Theisenschlamm

Der Theisenschlamm zeigt für fast alle Elemente bis auf Kobalt geringe Varianzen, die nur im Falle des Magnesiums schief sind. Die übrigen Parameter zeigen symmetrische Verteilungen. Im allgemeinen befinden sich die Elementgehalte deutlich außerhalb der Varationsbreite des Ausgangsmaterials. Im Falle des Kadmiums, des Kupfers, des Bleis und des Zinks ist dagegen die Nähe der Varianz zu der Variabilität des Ausgangsmaterials interessant (Abb. 11 und 12). Diese Elemente müßten bei der Interpretation der Teufenverlagerungen etwas vorsichtig verwendet werden. Absolut gesehen sind jedoch Veränderungen im 1000 ppm-Bereich festzustellen (siehe Anhang 2).

Abb. 11: Hauptelement-Variation im Theisenschlamm.

Abb. 12: Schwermetall-Variation im Thesienschlamm.

Graue Berge

Die Stoffgruppe der Grauen Berge zeigt eine relativ große Varianz für die Elemente Schwefel, Arsen und Kobalt und schiefe Verteilungen für Zink und Schwefel. Im allgemeinen befinden sich die nach der Laugung gemessenen Gehalte deutlich außerhalb der Variationsbreite im Ausgangsmaterial, nur für Kalzium, Kalium, Kobalt und besonders Mangan gilt dieses nicht (Abb. 13 und 14). Diese sind dann für die Mobilisierungsbetrachtungen als weniger kritisch zu bewerten.

Abb. 13: Hauptelement-Variation in den Grauen Bergen.

Abb. 14: Schwermetall-Variation in den Grauen Bergen.

Schlacke

Hohe Variationen zusammen mit sehr schiefen Verteilungen zeigt in der Schlacken-Probe nur das Mangan. Gleichzeitig befinden sich dessen Gehalte nach der Eluation ganz innerhalb, alle anderen Elemente deutlich außerhalb der natürlichen Variationsbreite des Ausgangsmaterials (Abb. 15 und 16). Daher ist dieses Element bei der Aufstellung von Mobilisierungstypen im folgenden Abschnitt als nicht kritisch zu bewerten.

Abb. 15: Hauptelement-Variation in der Schlacke.

Abb. 16: Schwermetall-Variation in der Schlacke.

Schwelgut

Im Schwelgut zeigt nur das Element Kobalt eine große Variabilität und wie die übrigen Elemente auch, symmetrische Verteilungen (Abb. 17 und 18). Ausnahmen deuten nur die Elemente Kalzium und Kupfer an. Die Gehalte an Kadmium, Kobalt und Blei nach der Laugung befinden sich innerhalb oder nahe der natürlichen Variabilität des Ausgangsmaterials. Dieses bedeutet wiederum, daß diese Elemente für Mobilisierungsuntersuchungen als nicht kritisch zu bewerten sind.

Abb. 17: Hauptelement-Variation im Schwelgut.

Abb. 18: Schwermetall-Variation im Schwelgut.

6.2. Mobilisierungstypen

Im zweiten Schritt wurde die Verteilung der Elementgehalte in Lysimeterkisten im Vergleich vor und nach den Eluierungsversuchen betrachtet. Dafür wurde wiederum jede Komponente in jeder Probe auf den jeweiligen Mittelwert (mean) vor der Eluation normiert, wodurch der elementspezifische Vergleich der Proben untereinander gewährleistet ist. Ziel dieser Betrachtung wird es sein, festzustellen, welche Veränderungen das Untersuchungsmaterial im Laufe der Zeit (Ende der Lysimeterbeprobung) aufweisen wird. Die Ergebnisse dieser Untersuchung befinden sich im Anhang 4 und lassen die Aufstellung von generalisierten Mobilisierungstypen zu (Abb. 19).

Abb. 19: Verallgemeinerte Mobilisierungstypen, die aus der Beobachtung des elementspezifischen Vergleichs der Proben untereinander abgeleitet worden sind (1: Abreicherungstyp, 2: Anreicherungstyp, 3: Mischtyp).

Der Mobilisierungstyp 1 stellt einen Abreicherungstyp dar und ist die dominierende Verteilung für fast alle Parameter in den Theisenschlamm- und Schwelgut-Proben. Wie im Abschnitt 6.1 beschrieben, befindet sich die Verteilung des Elements Zink im Bereich der natürlichen Variabilität des Theisenschlammes und muß daher als weniger kritisch für die Aufstellung von Mobilisierungstypen betrachtet werden.

Eine wesentliche vertikale Verlagerung der Schwermetalle scheint im Kupferschiefer und in der Schlacke nicht stattgefunden zu haben. Im allgemeinen überwiegt also der indifferente Mischtyp unter den Mobilisierungstypen für diese Stoffgruppen. Auch der Schwefel-Gehalt im Kupferschiefer befindet sich im Bereich der natürlichen Variation des Ausgangsmaterials. In diesem Falle können Schichtungsinhomogenitäten angenommen werden.

Die höchsten Elementgehalte befinden sich in den Grauen Bergen im tieferen Bereich (Anreicherungstyp). Dabei treten Anreicherungen um Faktoren von 2 (Kadmium) bis 7 (Arsen) auf.

6.3. Hydrogeochemie

Mit dem Erhalt von Eluatanalysen ergibt sich dann im letzten Schritt die Möglichkeit, die Dynamik der Mobilisierung der Schwermetalle in der Zeit zu betrachten Da aber die Menge des Eluatwassers während der Versuchsreihe leider nicht mitgemessen worden ist, und Klimadaten nur unvollständig aufgezeichnet worden sind, konnte eine Schwermetall- oder Wasserbilanzierung nicht durchgeführt werden. Ein Problem für eine eventuelle Bilanzierung wäre auch, daß der Eintrag an Schwermetallen durch nasse Deposition (Niederschläge) nicht mitgemessen worden ist, jedoch als Input-Größe eine besondere Rolle spielt und in einer eventuellen Bilanzierung wichtig ist.

Die Beschaffenheit des Eluatwassers ist das Ergebnis einer komplexen geochemischen Entwicklung vom Niederschlag über das "Sickerwasser" zum Eluatwasser. Dabei kommt es zu einer Verzahnung physikalischer, chemischer und biologischer Einflußgrößen, die zusammen ein komplexes Wirkungsgefüge bilden. Elutionsversuche sollen diese Vorgänge modellhaft abbilden, um die Gefährdung des Grundwassers durch Austrag von Schadstoffen abschätzen zu können.

6.3.1. Der pH-Wert

Sulfidische Verbindungen (wie Pyrit) geben bei ihrer Verwitterung Protonen an die Porenlösung ab, es entsteht dann ein sulfat- und metallreiches Eluat, das durch die hohe Protonenkonzentration einen sehr niedrigen, sauren pH-Wert erzeugt. Dieses im Zusammenspiel mit oxidierenden Bedingungen sorgt für eine große Mobilität von Schwermetallen. Im folgenden werden die nach den Durchgängen erreichten pH-Werte dargestellt (Abb. 20).

Der initiale pH-Wert, der durch den Niederschlag in das System hineingebracht wird, ist nach MATHEIS und JAHN (1996) mit 6,4 angenommen worden.

In den Proben Kupferschiefer, Graue Berge und Schlacke stellt sich ein pH-Wert zwischen 6 und 8 ein und steigt im Verlauf der Untersuchungen nur geringfügig aber, unterbrochen von einem leichten Rückgang im zweiten Durchgang, stetig an. Die Theisenschlamm-Proben und besonders die Schwelgut-Proben zeigen schon im ersten Eluat einen sehr niedrigen pH-Wert (4,2 bzw. 2,7). Im Theisenschlamm stieg der pH-Wert dann in den folgenden Durchgängen stetig bis auf einen Wert um 6 an, wohingegen das Schwelgut kaum verändert bei pH-Werten um 3 blieb.

Abb. 20: Veränderungen des pH-Wertes im Eluat während des Beprobungszeitraumes.

6.3.2. Elektrische Leitfähigkeit

Die elektrische Leitfähigkeit, der reziproke Wert des Gesamtwiderstandes, stellt ein Maß für den Austrag leicht löslicher Salze dar. Sie ist im allgemeinen von der Temperatur und von der Art und Konzentration gelöster Ionen abhängig.

Sehr hohe elektrische Leitfähigkeiten zeigen alle fünf Probenarten in den ersten vier Durchgängen (siehe Abb. 21), besonders jedoch der Theisenschlamm und das Schwelgut. Abgestuft folgen dahinter der Kupferschiefer und die Grauen Berge. Die geringsten Leitfähigkeiten zeigt die Schlacke. Zum fünften Durchgang hin kommt es zu einem deutlichen Abfall der elektrischen Leitfähigkeit in allen Eluaten und daraufhin zu einer kontinuierlichen langsamen Abnahme. Die elektrische Leitfähigkeit ist nach Auswertung der Konzentrationsangaben für die Eluatwässer (Anhang 3) bei allen Proben auf das Sulfat-Anion aus der Sulfidoxidierung zurückzuführen, und, besonders im Theisenschlamm, auch in geringerem Maße auch auf Chloride und Fluoride.

Abb. 21: Veränderungen der elektrischen Leitfähigkeit im Eluat während des Beprobungszeitraumes.

In der vorliegenden Studie sind Analysen der korrelativen Beziehungen zwischen diesen beiden Parametern, elektrische Leitfähigkeit und pH, durchgeführt worden, deren Ergebnisse in der folgenden Tabelle 8 dargestellt sind.

Probe	Probenanzahl	r
Theisenschlamm	7	-0,9645
Schwelgut	4	-0,8753
Kupferschiefer	7	-0,8211
Graue Berge	7	-0,7817
Schlacke	7	-0,3861

 Tab. 8: Korrelation von pH-Wert und elektrischer Leitfähigkeit nach Proben

Für alle Proben erhält man eine gute negative Korrelation von pH-Wert und elektrischer Leitfähigkeit. Im Vergleich ist die negative Korrelation im Theisenschlamm am besten (r = -0.9645).

Tabelle 9 (auf der folgenden Seite) zeigt korrelative Untersuchungen der saisonalen Einflüsse (Temperatur, Niederschlagsmenge und Dauer) auf die elektrische Leitfähigkeit und den pH-Wert. In allen Proben korreliert die elektrische Leitfähigkeit relativ gut positiv mit der Temperatur, wobei das Schwelgut die beste Korrelation in dieser Reihe aufzeigt. Daneben zeigt sich die beste negative Korrelation der Temperatur und Niederschlagsmenge zum pH-Wert auch nur im Schwelgut. Dieses hat auch die beste positive Korrelation der Niederschlagsmenge zur elektrischen Leitfähigkeit. Die Dauer zwischen den Probenahmen spielt, mit Ausnahme der Schlacke-Proben, im allgemeinen keine Rolle. Nähere korrelative Untersuchungen sind im Abschnitt 6.3.5.: Multivariate statistische Analyse der Eluate dargestellt.

		Т	Nds	Dauer
C C	pН	-0,6657	-0,1975	-0,6113
Cu-S	LF	0,8549	0,5561	0,2242
The st	pН	-0,8062	-0,2041	-0,3075
Inei	LF	0,8480	0,4216	0,3867
	pН	-0,6737	-0,4558	-0,5346
Gr.B.	LF	0,8528	0,3155	0,2595
G 11	pН	-0,3874	0,0449	-0,8499
Schl	LF	0,8047	0,4939	0,0221
Calver	pH	-0,9421	-0,9082	-,04207
Schw	LF	0,9229	0,8606	0,2375

Tab. 9: Korrelationsmatrix zum Einfluß der Temperatur und der Niederschlagsmenge auf die elektrische Leitfähigkeit (LF) und den pH-Wert in den Proben; (T = Temperatur, Nds = Niederschlagsmenge, Dauer = Dauer zwischen den Probenahmen).

6.3.3. Grenzwertuntersuchungen

Dieser Abschnitt beschäftigt sich mit der Frage, welche zeitliche Entwicklung der Auslaugungsprozeß nehmen wird und wie sich die Ergebnisse im Hinblick auf Grenzwertlisten (hier die Holland-Liste, siehe Tabelle 10) bewerten lassen. Gleichzeitig wird für jede Komponente im Eluat eine Untersuchung zur Spezies-Bestimmung vorangestellt. Dieses ist für spätere weitergehende Untersuchungen wie Ionenbilanzierungen (siehe Abschnitt 6.3.4.) von Bedeutung.

Für einen Teil der Spezies in den Eluaten, die über die Ionenchromatographie bzw. ionensensitive Elektroden gemessen worden sind, ist die Spezies ja automatisch bekannt, also Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, SO₄²⁻, NO₃⁻, F⁻und Br⁻.

Im Gegensatz dazu wurden die Konzentrationen der Schwermetalle und Arsen über die Flammen-AAS und die Graphitrohr-Technik gemessen, so daß in diesen Fällen keine Angaben über die vorhandene Spezies vorliegen. In diesen Fällen wurde mit anhand

von Eh-pH-Stabilitätsdiagrammen (BROOKINS, 1988, Anhang 6) die wahrscheinlich vorhandene Spezies angenommen und mit deren Wertigkeit gerechnet. Anzumerken wäre an dieser Stelle, daß nach Berechnungen der in den zu untersuchenden Eluaten vorhandenen Aktivitäten die Eh-pH-Diagramme in BROOKINS (1988) Stabilitätsbereiche für Aktivitäten der beteiligten Komponenten im Bereich von 10⁻⁶ mol/l gültig sind. Besonders für Zink und Sulfat liegen jedoch die Aktivitäten für die Proben Theisenschlamm und Schwelgut im Bereich von 10^{-1} bis 10^{-2} mol/l und für andere Spezien im Bereich von 10⁻³ mol/l. Dieses ist für die Fragestellung der Stabilitäten und Sättigungsgrade für bestimmte Sekundärphasen wichtig, ist jedoch im Rahmen dieser Studienarbeit nicht weitergehend untersucht worden.

Die Auswertung des Datenmaterials im Hinblick auf die Beurteilung von ausgewählten Richt- und Grenzwerten für Wasserproben orientierte sich vornehmlich an der Holländischen Liste und für Nitrat und Sulfat an der Berliner Liste.

Kategorie	Α	В	С
As	0,01	0,03	0,1
Cd	0,001	0,0025	0,01
Со	0,02	0,05	0,2
Cu	0,02	0,05	0,2
Ni	0,02	0,05	0,2
Pb	0,02	0,05	0,2
Zn	0,05	0,2	0,8
F-	0,3	1,2	4
Br ⁻	0,1	0,5	2
*NO3	50	100	200
*SO4 ²⁻	240	500	1000

Tab. 10: Grenzwerte für Elementgehalte im Wasser (Holland-Liste; A: Referenzkategorie, B: Kategorie für nähere Untersuchungen, C: Kategorie für Sanierungsuntersuchungen; *NO₃ und *SO₄² : Grenzwerte Berliner Liste; alle Angaben in mg/l; Quelle: Vorlesungsskript Umweltgeochemie, MATHEIS)

Erdalkali- und Alkalikationen

Bei den Erdalkali- und Alkalikationen ist die Bestimmung der Spezies eindeutig, da die Analysen mit Hilfe der Ionenchromatographie im Hinblick auf eine Art der Spezies gemacht worden sind. Es liegen also Na⁺, K⁺, Mg²⁺ und Ca²⁺ vor. In den Diagrammen zu Grenzwertbetrachtungen (Anhang 5) wird deutlich, daß die Ionen Na⁺, K⁺ und Mg²⁺ kontinuierlich abnehmen. Eine stärkere Abnahme zeigt sich im besonderen im vierten Durchgang bei allen Proben. Etwas anders verhält sich das Ca²⁺, das in den Grauen Bergen und in der Schlacke zunächst eine Abnahme zeigt, im Bereich des vierten und fünften Durchganges jedoch wieder ein lokales Maximum hat. Dagegen zeigt sich die Ca²⁺-Konzentration im Kupferschiefer, im Schwelgut und im Theisenschlamm zunächst gleichbleibend hoch, um dann im Bereich des vierten und fünften Durchgangs ein lokales Minimum zu haben. Da keine Grenzwerte für diese Spezies vorliegen, wird von einer Grenzwertbetrachtung abgesehen.

Arsen

Arsen liegt in wässrigen Lösungen im allgemeinen als Anion vor (BROOKINS, 1988, Anhang 6). Im sauren Bereich unter leicht reduzierenden bis leicht oxidierenden Bedingungen ist die H₃AsO₃-Spezies (Arsenit-III) stabil. Bei deutlich oxidierenden Bedingungen ist dieses die H₂AsO₄-Spezies (Arsenat-V) und dominiert damit auch hier, da allgemein von gut durchlüfteten Eluaten ausgegangen werden kann (APPELO & POSTMA, 1993). Im Vergleich zu der in der Holland-Liste angegebenen Grenzwerten werden alle Kategorien für die Arsen-Konzentrationen in den Proben Theisenschlamm und Schwelgut, in denen Arsen mit der zur Verfügung stehenden Analytik nachgewiesen werden konnte, um das 2- bis 4-fache überschritten. Dabei konnte im Schwelgut, das als einzige Probe Arsen in allen vier Eluat-Durchgängen nachweislich enthält, ein ebensolches Minimum im vierten Durchgang festgestellt werden.

Kadmium

Unter sauren und deutlich oxidierenden Bedingungen, wie sie in diesem Falle vorherrschen, dominiert nach BROOKINS (1988, Anhang 6) die Cd²⁺-Spezies. Bei schwach oxidierenden Bedingungen könnte sich auch die CdS-Spezies bilden, doch ist aufgrund des ständigen Kontaktes der Eluate mit dem Luftsauerstoff nicht davon auszugehen. Nur die Proben Theisenschlamm und Schwelgut zeigen meßbare Gehalte an Kadmium in den Eluaten. Diese überschreiten jedoch die Grenzwerte der Holland-Liste der Kategorie C um das 100-1.000-fache. Der generelle Trend zur Abnahme der Konzentrationen mit einem deutlichen Rückgang der Kadmium-Konzentration im vierten Durchgang zeigt sich auch hier.

Kobalt

Für Kobalt gelten ähnliche Bedingungen wie für Kadmium. Damit ähneln sich die Stabilitätsbereiche, so daß von einer Co²⁺-Spezies ausgegangen werden kann. Eine bis zu 40-fache Überschreitung der Grenzwerte aller Kategorien der Holland-Liste ist für das Element Kobalt im Theisenschlamm festzustellen. Der Trend zur Abnahme der Konzentrationen mit der Ausbildung eines lokalen Minimums im vierten Durchgang ist sowohl beim Theisenschlamm als auch beim Schwelgut wiederum nachweisbar (Anhang 5).

Die Konzentrationen von Kobalt sind im Schwelguteluat deutlich geringer als im Theisenschlammeluat, befinden sich jedoch im Bereich der Kategorie C der Holland-Liste und überschreiten diesen Grenzwert in drei Durchgängen.

Kupfer

Im Unterschied zum Kobalt sind die Konzentrationen des Kupfers im Schwelguteluat größer und übersteigen hier die Kategorie C der Holland-Liste um das 100- bis 1000-fache (Anhang 5). Die Konzentrationsabnahme ist aber genauso stetig und hat ein lokales Minimum im vierten Durchgang. Das Theisenschlammeluat zeigt Konzentrationen an Kupfer, die sich im Bereich der Kategorie C der Holland-Liste befinden. Nach BROOKINS (1988, Anhang 6) liegt unter den gegebenen Bedingungen das Kupfer als Cu²⁺-Spezies vor. Zu beachten ist jedoch, daß das Stabilitätsfeld des Kupfer-Ions kleiner ist und ab einem pH > 6,5 Feststoffe (CuO, Cu₂O) gebildet werden. Dieses ist besonders im Hinblick auf die Bildung von Sekundärmineralen zu beachten. Tenorit, CuO, und Cuprit, Cu₂O, sind in Schlacken nachgewiesen worden (Tabelle 7).

Mangan

Das oben für Kupfer gesagte gilt auch für das Mangan, doch ist das Stabilitätsfeld für Mn^{2+} im EhpH-Diagramm größer als beim Cu^{2+} (BROOKINS, 1988; Anhang 6). Anzeichen für mögliche Feststoffe, die sich gebildet haben könnten, gehen aus der Auflistung der Sekundärminerale (Tabellen 4 und 7) nicht hervor. In der Abfolge Theisenschlamm-, Schwelgutund Kupferschiefereluat nimmt die Mangan-Konzentration jeweils um eine Größenordnung ab. Jedoch zeigen alle Proben stetig abnehmende Konzentrationen mit einem lokalen Minimum im vierten Durchgang (Anhang 5).

Nickel

Nickel ist unter den gegebenen Bedingungen als Ni²⁺ ionar vorhanden und damit sehr mobil (BROOKINS, 1988; Anhang 6). Nur im Theisenschlamm und im Schwelgut sind mit der vorhandenen Analytik meßbare Konzentrationen an Nickel festgestellt worden. Die Grenzwerte der Kategorie C der Holland-Liste werden im Theisenschlamm bis zu 100fach überschritten. Die Schwelguteluate überschreiten diesen Grenzwert geringfügiger (Anhang 5). Beide Proben zeigen im zeitlichen Verlauf eine stetige Abnahme der Konzentrationen an Nickel und ebenso ein lokales Minimum im vierten Durchgang.

Blei

Die Proben Theisenschlamm und Schwelgut, die mit der vorhandenen Analytik meßbare Blei-Konzentrationen aufweisen, haben ein ausgeprägtes lokales Minimum im vierten Durchgang bei weniger deutlicher Abnahme der Konzentrationen an Blei in den Eluaten in der Zeit (Anhang 5). Wiederum werden die Grenzwerte der Kategorie C der Holland-Liste um das 10- bis 50-fache überschritten. Im Besonderen müssen die Stabilitätsbereiche für Blei im pH-Eh-Diagramm diskutiert werden. Nur unter sehr sauren Bedingungen (pH < 1, BROOKINS, 1988; Anhang 6) ist Blei als Ion (Pb^{2+}) gelöst. Damit ist es praktisch immobil, denn es entstünde unter den gegebenen Bedingungen sogleich ein Feststoff (PbSO₄, Anglesit). DEUTSCH (1997) bemerkte jedoch eine relativ hohe Mobilität von Blei in Form von Organo-Komplexen im Besonderen unter stark sauren Bedingungen. Die Annahme einer Pb^{2+} -Spezies für die Ionenbilanzierung ist in diesem Falle nur durch die starke Ionenbindung des Bleis im Anglesit ($Pb^{2+} + SO_4^{2-}$) begründet, der relativ häufig als Sekundärmineral vorkommt (Tabellen 4 und 7).

Zink

Die Zn²⁺-Spezies dominiert unter den gegebenen Bedingungen das pH-Eh-Stabilitätsfeld. Lediglich in annähernd neutralen Eluaten kann es zur Bildung eines ZnCO₃-Feststoffes kommen (BROOKINS, 1988; Anhang 6). Die Zink-Konzentrationen liegen um das 10- bis 1.000-fache, in den Theisenschlammeluaten sogar um das 10.000-fache über dem Grenzwert der Kategorie C der Holland-Liste. Auch zeigen die Proben im Vergleich zu den anderen Elementen beim Zink keine so deutliche stetige Abnahme und das lokale Minimum im vierten Durchgang ist nur im Schwelguteluat ausgeprägt. Im Falle des Kupferschiefereluats kommt es sogar zu einem leichten Konzentrationsanstieg des Zinks. Im Schlackeneluat ist nur während des 5. Durchganges eine mit der vorhandenen Analytik meßbare Zink-Konzentration festgestellt worden. Dabei wurde der Grenzwert der Kategorie B der Holland-Liste erreicht (Anhang 5).

Halogenide: Fluorid, Chlorid, Bromid

Für das Fluorid ist ein ähnlich stetig abnehmender Verlauf der Konzentrationskurve mit der Ausbildung eines lokalen Minimums im vierten Durchgang festzustellen (Anhang 5). Nur in der Theisenschlamm-Probe steigt die Konzentration wieder auf den Anfangswert. In der Theisenschlamm- und in der Schwelgut-Probe liegen die Konzentrationen um das 10-fache über dem Grenzwert der Kategorie C der Holland-Liste. Die übrigen Proben liegen im Bereich der Kategorie B. Dieses gilt auch für das Bromid. Die zeitlichen Konzentrationsverläufe unterscheiden sich jedoch stark voneinander. Die Theisenschlammeluate zeigen einen stetig abnehmenden Verlauf mit der Ausbildung eines lokalen Minimums im vierten Durchgang. Eine Abnahme der Konzentration des Bromids zeigt das Kupferschiefereluat in den ersten drei Durchgängen, für die mit der vorhandenen Analytik Meßwerte vorhanden sind. Im Schwelguteluat kommt es jedoch nach dem Durchlaufen des lokalen Minimums im vierten Durchgang zu einer sehr starken Zunahme der Konzentration an Bromid.

Die Chlorid-Konzentrationen zeigen deutliche Abnahmen um eine Größenordnung bei allen Proben. Es ist auch ein lokales Minimum im vierten bzw. auch fünften Durchgang ausgebildet. Grenzwerte liegen in dieser Studie nicht vor.

Nitrat

Die Nitrat-Konzentrationen liegen hier generell unter der Kategorie A der Grenzwerte der Berliner Liste (Anhang 5). Nur im ersten Durchgang werden die Kategorie A vom Kupferschiefereluat und die Kategorie B vom Eluat der Grauen Berge überschritten. Die stetig abnehmenden Konzentrationen mit dem lokalen Minimum im vierten Durchgang zeigen alle Proben bis auf das Eluat der Grauen Berge.

Sulfat

Für das Sulfat gilt das schon zum Kalzium gesagte. Das Schlackeneluat und das Eluat aus den Grauen Bergen zeigen im Bereich des vierten und fünften Durchgangs ein lokales Maximum bei allgemein abnehmender Tendenz, wohingegen das Kupferschiefer-, das Schwelgut- und das Theisenschlammeluat eine leicht abnehmende Tendenz mit der Ausbildung eines lokalen Minimums im vierten Durchgang aufweisen (Anhang 5). Einen weiteren Unterschied stellt die Überschreitung der Grenzwerte der Kategorie C der Berliner Liste durch die Kupferschiefer-, die Schwelgut- und die Theisenschlamm-Proben (dort bis zu 10-fach) dar. Die Eluate aus den Grauen Bergen und die Eluate aus den Schlacken unterschreiten jedoch auch die Grenzwerte der Kategorie A der Berliner Liste.

6.3.4. lonenbilanzierung und Berechnung der Aktivitäten

Ionenbilanzierung

Wohlwissend, daß in diesen komplexen Systemen mit vielen Spezies und sehr hohen Konzentrationen, die Stabilitätsbereiche durch gegenseitige Abhängigkeit voneinander sehr variabel sind, ist im vorherigen Abschnitt ein Versuch unternommen worden, abzuschätzen, in welcher Spezies das Element sich befinden könnte, um im Anschluß eine Ionenbilanzierung durchführen zu können.

Die Ionenbilanz bietet die Möglichkeit die Qualität der Analyse zu kontrollieren und ist in hydrogeochemischen Untersuchungen die Basis einer jeden Auswertung. Der Gesamtlösungsinhalt (TDS = total dissolved solids) kann über die elektrische Leitfähigkeit näherungsweise mit

TDS = 0,7 * el. LF [mg/l]

berechnet werden (Vorlesung: Hydrogeochemie, Dr. SCHEYTT). Molgewichte sind RIEDEL (1990) entnommen.

Im allgemeinen ergaben die Ionenbilanzierungen Bilanzen von + 45% bis - 45% (siehe Anhang 8). Für den Kupferschiefer konnte festgestellt werden, daß die über die elektrische Leitfähigkeit ermittelten Gesamtkonzentrationen an gelösten Stoffen 75-88% der gemessenen Konzentrationen bestätigen. Für den Kupferschiefer erhält man über diese Formel ab dem fünften Durchgang eine zu geringe Gesamtkonzentration an gelösten Stoffen im Vergleich zu der Summe der gemessenen Konzentrationen (nur um 15%). Da aber die Ionenbilanz für diese Durchgänge sehr gut ist (-1% bis -3%), könnte in diesem Fall ein Versagen des Meßgerätes für die elektrische Leitfähigkeit angenommen werden.

Im Falle der Schlacke erhält man für die Durchgänge 1 bis 4 zu hohe Gesamtmineralisierungswerte aufgrund der elektrischen Leitfähigkeit (100-300% der gemessenen Konzentrationen). Dieses dürfte daran liegen, daß andere Spezien, wie das HCO_3^- (Alkalinität) aus dem Regenwasser, eine Rolle spielen, nicht mitgemessen worden sind, jedoch zur höheren elektrischen Leitfähigkeiten führen. Diese Vermutung wird durch die schlechtere Ionenbilanz (+15% bis 25%, also mehr Kationen als Anionen) untermauert. Ab Durchgang 5 errechnet man wieder zu wenig Gesamtmineralisierung (34-40%), die Ionenbilanzen bleiben aber auch hier schlecht (+34-41%). Grund dafür könnte wieder der größere Einfluß der nicht gemessenen Alkalinität bei geringer werdender Gesamtmineralisation sein.

Der Theisenschlamm und besonders das Schwelgut zeigen einen deutlichen Anionenüberschuß (-3% bis -30%, bzw. -30% bis -45% Kationen, siehe auch Anhang 8). Die Ursache dafür könnte darin liegen, daß eventuell für Komplexierungen mehr Anionen benötigt werden. Dieses läßt sich jedoch nicht mit großer Wahrscheinlichkeit vermuten.

Die Proben der Grauen Berge sind wie im Abschnitt 5 (Charakterisierung der Proben) beschrieben von Kalken dominiert, daher sollten fehlende Anionen (Ionenbilanz +7% bis +44%) im Hydrogencarbonat zu finden sein. Darauf deutet auch der TDS-Gehalt hin, der aus der elektrischen Leitfähigkeit berechnet worden ist (400% der gemessenen Ionenkonzentration). Dafür spricht auch, daß das Hydrogenkarbonat-Ion die stabile Spezies unter sauren Bedingungen ist (BROOK-INS, 1988).

Die folgende Grafik (Abb. 22) zeigt, daß der Kupferschiefer ein sehr gutes Kationen/Anionen-Gleichgewicht ausgebildet hat, bzw. daß die Analyse gut war, da sie alle Parameter richtig erfaßt hat (leichter Anionenüberschuß). Für die Schlacke und die Grauen Berge ist ein Anionendefizit bzw. Kationenüberschuß festzustellen. Der Theisenschlamm und das Schwelgut weisen ein Kationendefizit auf.

Abb. 22: Ionenbilanz: Korrelation der Anionenkonzentration gegen die Kationenkonzentration (jeweils in meq/l).

Berechnung der lonenaktivitäten

Sind hohe Konzentrationen an Ionen vorhanden, muß man davon ausgehen, daß die einzelnen Spezies sich gegenseitig beeinflussen. Man spricht daher von durch die Ionenstärke des Wassers beeinflußten, über Aktivitätskoeffizienten wirksamen Konzentrationen (Aktivitäten). APPELO und POSTMA (1993) zeigen die mathematisch-chemischen Grundlagen auf, nach denen die Aktivitäten der einzelnen Spezien berechnet werden können. Über die Ionenstärke I des Wassers:

$$I = \frac{1}{2}S m_i * z_i^2$$

 $m_i = Konzentration in mol/l z_i = Wertigkeit der Spezies$

erhält man den Aktivitätskoeffizienten γ:

für **I** < 0,5 gilt dann:

$$\log \mathbf{g} = -\mathbf{A} * \mathbf{z}_{i}^{2} ((\mathbf{I})^{1/2} / (1 + (\mathbf{I})^{1/2} - \mathbf{0}, \mathbf{3} \mathbf{I}))$$

$$A = 0,5085$$
 bei 25°C

Die Aktivität für jede Spezies [i] errechnet sich dann nach:

$$[i] = \mathbf{g}_i * m_i$$
 [mol/l]

Die Berechnung der Aktivitätskoeffizienten und Aktivitäten ist im Anhang 8 explizit dargestellt und finden im folgenden Abschnitt ihre Anwendung.

6.3.5. Multivariate statistische Analyse der Eluate

Eine einfache hierarchische Clusteranalyse nach der gewichteten Mittelwert-Methode (DAVIS, 1986) ist hier zum Zwecke der Unterscheidung statistisch homogener Gruppen aufgrund deren relativer Ähnlichkeit durchgeführt worden. Für die statistische Auswertung wurden die Aktivitäten der Ionen Ca²⁺, K^+ , Mg^{2+} , Mn^{2+} , Br^- , Cl^- , F^- , NO_3^- , SO_4^{-2-} , AsO_4^- , Cd^{2+} , Co^{2+} , Cu^{2+} , Ni^{2+} , Pb^{2+} und Zn^{2+} im Eluat, soweit gemessen, sowie die Parameter pH, elektrische Leitfähigkeit (LF) im Eluat, der Niederschlag (Nds) und Temperatur (Temp) einbezogen. Die Verwendung von Aktivitäten anstatt von Konzentrationen soll an dieser Stelle besonders betont werden, da bei Vorhandensein von derartig hohen Konzentrationen der Stoffe im Eluat diese sich gegenseitig beeinflussen, was am besten durch die Berechnung von Aktivitätskoeffizienten und Aktivitäten, also wirksamen Konzentrationen (siehe Abschnitt 6.3.4.) ausgedrückt werden kann. Durch die Berechnung von Aktivitäten für die Ionen und anschließender Normierung auf den jeweiligen Mittelwert wird der Einfluß unterschiedlicher Größenordnungen bei der Berechnung der bivariaten Korrelationsgrößen vermindert. Die hierarchische Gruppierung spiegelt demnach in diesem Falle besonders Ähnlichkeiten im zeitlichen Verhalten der Parameter in den Eluaten wieder.

Die Bildung von Clustern ist ein effizienter Weg, um komplexe Beziehungen unter vielen Parametern darzustellen. In mehreren Iterationsschritten wird schrittweise aus der bivariaten Korrelation die scheinbare, cophenetische Korrelation der Gruppen untereinander errechnet und in einem Dendrogramm als relative Ähnlichkeit dargestellt. Um die Qualität einer jeden hierarchischen Clusterbildung zu überprüfen, bildet man eine Matrix mit cophenetischen Werten, die nichts anderes sind, als die Matrix der scheinbaren Korrelation der Parameter im Dendrogramm. Vergleicht man dann die originalen Korrelationen mit den cophenetischen, so sollte, wenn das Dendrogramm die Struktur der Korrelation exakt darstellt, idealerweise ein Korrelationskoeffizient von 1 zwischen cophenetischer und originaler Korrelation erreicht werden. Dieses wäre aber nur dann der Fall, wenn keine Gruppierungen und damit ein Zusammenfassen vorgenommen würden. Gute Gruppierungen würden nach DAVIS (1986) schon Korrelationskoeffizienten von über 0,7 andeuten.

Besonders wäre auch für die Aussagefähigkeit der vorgestellten Korrelationsanalyse zu bemerken, daß die Parameter aufgrund von nur 7 Werten (7 Durchgänge) miteinander korreliert worden sind. Eine bessere statistische Aussage wäre durch mehr Werte (und damit mehr Durchgänge) gegeben. Dieses sollte für ein eventuelles Folgeprojekt, das sich mit der multivariat-statistischen Analyse der Eluate beschäftigen sollte, mit bedacht werden (siehe auch Diskussion im folgenden Abschnitt 7).

Kupferschiefer

In neun Iterationsschritten wurde die Gruppierung zu Clustern im Kupferschiefereluat durchgeführt. Eine ausführliche Darstellung der Iterationsschritte und die Korrelationsberechnung befindet sich im Anhang 9. In der folgenden Abbildung 23 ist das Dendrogramm zur hierarchischen Clusteranalyse im Kupferschiefereluat zu sehen.

Abb. 23: Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-Methode (DAVIS, 1986) für das Kupferschiefereluat.

Der erste Cluster vereint drei Subgruppen, die aus den Parametern Mn²⁺-CI-NO₃⁻-Na⁺, F⁻LF-Mg²⁺ und SO₄²⁻-Temp-K⁺ bestehen. Dabei nimmt die Korrelation der Parameter untereinander ab. Der Parameter Nds wird durch die hierarchische Clusteranalyse mit einem geringen positiven Korrelationskoeffizienten zu diesen drei Subgruppen gestellt. Der zweite Cluster vereint die Parameter Ca²⁺-pH-Zn²⁺, dieses jedoch mit geringen Absolutwerten für die relativen Ähnlichkeiten.

Abb. 24: Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur äquivalenten originalen Korrelationen im Kupferschiefereluat.

Der Vergleich der cophenetischen Korrelation zur äquivalenten originalen Korrelation ergab für die im Kupferschiefereluat durchgeführte hierarchischen Clusteranalyse eine relativ gute Korrelation von r =0,8171 (Abb. 24). Damit kann davon ausgegangen werden, daß diese Clusterung relativ gut die Struktur der korrelativen Beziehungen beschreibt.

Schlacke

In 6 Iterationsschritten wurde die Gruppierung zu Clustern im Schlackeneluat durchgeführt. Eine echte Gruppierung ist jedoch nicht sichtbar, da die Korrelationen hier nur sortiert worden sind. Dieses spiegelt das indifferente Verhalten der Schlacke während dieser Eluierungsversuche wider, das schon beim Mobiliersierungsverhalten in Abschnitt 6.2. deutlich geworden ist. Die exzeptionelle Stellung des Parameters pH ist besonders zu erwähnen (siehe auf der nächsten Seite folgende Abb. 25).

Abb. 25: Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-Methode (DAVIS, 1986) für das Schlackeneluat.

Vergleicht man die cophenetische Korrelation mit der äquivalenten originalen Korrelation kann die relativ gute Korrelation von r = 0,7963 als ein Zeichen für die korrekte Gruppierung durch die im Schlackeneluat durchgeführte hierarchischen Clusteranalyse gewertet werden (folgende Abb. 26). Eine ausführliche Darstellung der Iterationsschritte und befindet sich im Anhang 10.

Abb. 26: Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur äquivalenten originalen Korrelationen im Schlackeneluat.

Theisenschlamm

In 10 Iterationsschritten ist die gewichtete abhängige Korrelation ermittelt und in einem Diagramm zur hierarchischen Clusteranalyse dargestellt worden (Abb. 27). Die Details zur Berechnung der korrelativen abhängigen Verhältnisse befinden sich im Anhang 11.

Abb. 27: Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-Methode (DAVIS, 1986) für das Theisenschlammeluat.

Insgesamt zeigen die Parameter in der Theisenschlamm-Probe eine hohe Korrelation untereinander. In der Br⁻-Cl⁻-Cu²⁺-Mn²⁺-Mg²⁺-Na⁺-Gruppe werden durch die hierarchische Clusteranalyse die hohen korrelativen Koeffizienten für die relative Ähnlichkeit nur nach der Reihenfolge sortiert und es wird diesen der Parameter Nds zugeordnet. Eine kleinere Subgruppe bildet der Cd²⁺-Ni²⁺-Zn²⁺-K⁺-SO₄²⁻-Cluster. Schon mit deutlich geringerer relativer Ähnlichkeit folgt der NO₃⁻-Parameter. Das Blei bildet mit dem Parameter Temperatur einen eigenen Cluster mit einem relativ geringen Bestimmtheitsmaß.

Der Vergleich der cophenetischen Korrelation mit der äquivalenten originalen Korrelation ergibt einen sehr guten Wert für die Kontrolle der hierarchischen Clusteranalyse (r = 0,9184, siehe Abb. 29). Damit kann davon ausgegangen werden, daß diese Clusterung sehr gut die Struktur der korrelativen Beziehungen der Parameter im Theisenschlammeluat beschreibt.

Abb. 28: Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur äquivalenten originalen Korrelationen im Theisenschlammeluat.

Schwelgut

In neun Iterationsschritten wurde die Gruppierung zu Clustern im Schwelguteluat durchgeführt. Eine ausführliche Darstellung der Iterationsschritte und die Korrelationsberechnung befindet sich im Anhang 12. Die Parameter haben in den Clustern sehr hohe Korrelationen, die Gruppen untereinander jedoch relativ geringe (Abb. 30).

Abb. 29: Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-Methode (DAVIS, 1986) für das Schwelguteluat.

Bemerkenswert sind in diesem Falle die Stellungen des Parameters $H_AsO_4^-$, dessen relative Abhängigkeiten nur im Schwelgut berechnet werden konnte. Es werden die Cluster $H_2AsO_4^--K^+-Co^{2+}-Na^+$, $Cd^{2+}-Zn^{2+} Cu^{2+}-Ni^{2+}$, Temp-LF mit relativ hohen relativen Abhängigkeiten gebildet, zu denen auch das CI als Parameter hinzugestellt wird. $Mg^{2+}-F^--Mn^{2+}$, $Ca^{2+}-Pb^{2+} NO_3^--SO_4^{2-}$, dem der Parameter Nds hinzugestellt wird. Eine besondere Stellung nehmen die Parameter Br⁻ und pH in einem gesonderten Cluster ein, zeigen jedoch untereinander auch eine relativ geringe relative Abhängigkeit.

Vergleicht man die cophenetische Korrelation mit der äquivalenten originalen Korrelation kann die relativ gute Korrelation von r = 0,6939 als ein Zeichen für die korrekte Gruppierung durch die im Schwelguteluat durchgeführte hierarchische Clusteranalyse gewertet werden (Abb. 31).

Abb. 30: Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur äquivalenten originalen Korrelationen im Schwelguteluat.

Graue Berge

In sieben Iterationsschritten wurde die Gruppierung zu Clustern im Eluat der Grauen Berge durchgeführt. Eine ausführliche Darstellung der Iterationsschritte und die Korrelationsberechnung befindet sich in Anhang 13. Bei generell sehr geringer Korrelation der Gruppen untereinander zeigen auch nur die Cluster Na⁺-CI, K⁺-NO₃⁻ und Ca²⁺-Mg²⁺-SO₄²⁻ eine hohe Korrelation unter den Parametern (Abb. 32). Der Cluster pH-F⁻ und der Parameter Nds nehmen eine exzeptionelle Stellung ein und zeigen eine sehr geringe relative Ähnlichkeit.

Abb. 31: Dendrogramm zur hierarchischen Clusteranalyse nach der gewichteten Mittelwert-Methode (DAVIS, 1986) für das Eluat aus den Grauen Bergen.

Abb. 32: Darstellung der cophenetischen Korrelation aus dem Dendrogramm im Vergleich zur äquivalenten originalen Korrelationen im Eluat aus den Grauen Bergen.

In der Abb. 33 sind cophenetische Korrelation und originale Korrelation im Eluat der Grauen Berge im Vergleich zueinander dargestellt. Das Ergebnis eines Korrelationskoeffizienten von r = 0,9358 läßt darauf schließen, daß durch die hierarchische Clusteranalyse eine sehr gute Gruppierung der Parameter im Eluat der Grauen Berge erzielt worden ist.

7. Diskussion der Ergebnisse, Zusammenfassung und Ausblick

Diskussion

Im Rahmen der vorliegenden Arbeit erfolgte eine detailierte Untersuchung zum Mobilitätsverhalten von Schwermetallen aus Haldenmaterial typischer Kupferschiefer-Verhüttungsprodukte. Aus diesen Untersuchungen sollen Schlußfolgerungen zum Langzeitverhalten der Haldenkomponenten, eine Gefährdungsabschätzung und auch der mögliche Einsatz als Baustoff (insbesondere der Schlacke im Straßenbau, Wasserbau) erörtert werden.

Zunächst wurde festgestellt, daß die Teufenvariationen in den Eluierungskisten im allgemeinen Mobilisierungsvorgänge darstellen. Einige Elemente wie Schwefel im Kupferschiefer, Kalzium, Kalium, Kobalt und Mangan in den Grauen Bergen, Mangan in der Schlacke, Kadmium, Kobalt und Blei im Schwelgut und untergeordnet auch Kadmium, Kupfer, Blei und Zink im Theisenschlamm könnten einen Teil einer Schichtungsvarianz bzw. Inhomogenität durch das Beaufschlagen der Kisten darstellen, da deren Varianz im Bereich der natürlichen Variabilität der Proben liegt. Diese sind für die Aufstellung von Mobilisierungstypen als nicht kritisch bewertet worden.

Im zweiten Schritt wurde die Verteilung der Elementgehalte in Lysimeterkisten im Vergleich vor und nach den Eluierungsversuchen betrachtet. Dabei konnten generalisierte Mobilisierungstypen aufgestellt werden. Der Abreicherungstyp ist die dominierende Verteilung für fast alle Parameter in den Theisenschlamm- und Schwelgut-Proben. Dieses kann durch die hohe Reaktivität der Proben aufgrund deren geringer Körngröße und größeren Mobilität der Schwermetalle unter oxidierenden und sauren Bedingungen (Sulfidoxidierung) hervorgerufen worden sein. Eine wesentliche vertikale Verlagerung der Schwermetalle scheint im Kupferschiefer und in der Schlacke nicht stattgefunden zu haben. Im allgemeinen überwiegt also der indifferente Mischtyp unter den Mobilisierungstypen für diese Stoffgruppen. Dieses könnte im Falle der Schlacke an deren geringen Reaktivität liegen (in Glasmatrix eingeschlossene Sulfidtröpfchen) und im Falle des Kupferschiefers am höheren Karbonatanteil, der die Säurefreisetzung aus der Sulfidoxidierung puffert und für eine teilweise Fixierung der Schwermetalle sorgt. Die Grauen Berge, die einen noch höheren Karbonat-Anteil besitzen, zeigen höchste Elementgehalte im unteren Bereich der Lysimeterkiste (Anreicherungstyp). Dieses würde sich zum Teil durch die Karbonatpuffer-Wirkung erklären. Für eine bis zu 7-fache Anreicherung wie im Falle des

Arsens könnten Verwehungen von Theisenschlamm eine Rolle spielen.

Im dritten Schritt wurden hydrogeochemische Untersuchungen an den Eluaten durchgeführt. Für diese gilt, daß keine Wasser- oder Schwermetallbilanz durchgeführt werden konnte, da die Menge des Eluats nicht festgehalten worden ist. So sind durch den Autor nur relative Untersuchungen an den Eluaten durchgeführt worden.

Zuerst wurde die zeitliche Entwicklung des pH-Wertes und der elektrischen Leitfähigkeit näher betrachtet. Durch die hohen Sulfidkonzentrationen, ins Besondere im Theisenschlamm und im Schwelgut kommt es aufgrund von Sulfidoxidationen des vorher eher reduzierend gelagerten Materials zur Ausbildung eines sehr niedrigen pH-Wertes (3-4), der im Theisenschlamm in den folgenden Durchgängen stetig bis auf einen Wert um 6 stieg, wohingegen das Schwelgut kaum verändert bei pH-Werten um 3 blieb. Dieses zeigt die sehr hohe Reaktivität der Theisenschlamm-Proben und besonders der Schwelgut-Proben. Mit der Zeit werden die stückigen Komponenten von einer Oxidschicht ummantelt und die Umwandlung vom Sulfid zum Sulfat wird fast gestoppt. Dieses ist deutlicher in den Proben Kupferschiefer, Graue Berge und Schlacke zu erkennen. Es stellte sich ein pH-Wert zwischen 6 und 8 ein und stieg im Verlauf der Untersuchungen nur geringfügig aber stetig an. Das könnte zudem im Falle der Schlacken an deren geringer Reaktivität liegen, der Kupferschiefer und die Grauen Berge könnten aufgrund ihres Karbonatreichtums die Säurefreisetzung puffern. Der niedrige pH-Wert in den Theisenschlamm- und Schwelgut-Proben im Zusammenspiel mit oxidierenden Bedingungen, von denen man wegen des ständigen Kontaktes des Eluatwassers mit dem Luftsauerstoff ausgehen kann, sorgt für eine große Mobilität von Schwermetallen.

Aus diesem Grund ergibt sich auch ein umgekehrtes Bild bei der Leitfähigkeit. Sehr hohe elektrische Leitfähigkeiten zeigen alle fünf Probenarten in den ersten vier Durchgängen, besonders jedoch der Theisenschlamm und das Schwelgut. Danach kommt es zu einem deutlichen Abfall der elektrischen Leitfähigkeit in allen Eluaten und daraufhin zu einer kontinuierlichen langsamen Abnahme. Da bei allen Proben das Sulfat-Anion die Konzentration dominierende Spezies ist, ist davon auszugehen, daß die Sulfidoxidierung die elektrische Leitfähigkeit steuert, in geringerem Maße auch Chloride und Fluoride im Theisenschlamm.

Dieses wird durch die gute negative Korrelation des pH-Wertes mit der elektrischen Leitfähigkeit im besonderen im Schwelgut und im Theisenschlamm bestätigt. Abgeschwächt folgen dann der Kupferschiefer und die Grauen Berge. Die Schlacke zeigt nur eine niedrige negative Korrelation und verdeutlicht dadurch das indifferente und fast inerte Verhalten. Dieses könnte daran liegen, daß die Sulfidtröpfchen, die Sulfat-Ionen freisetzen könnten, sich im inneren einer Glasmatrix befinden und nur an Bruchkanten mit den Atmosphärilien reagieren können.

Weitere Untersuchungen zu korrelativen Beziehungen zwischen dem pH-Wert, der Temperatur, der Niederschlagsmenge und der Einwirkdauer der Atmosphärilien ergaben die beste positive Korrelation der Leitfähigkeit und der Temperatur im Schwelguteluat. Dieses könnte darin begründet sein, daß die Lysimeterkisten sehr klein sind und Temperaturänderungen von Außen in Reaktionsabläufe im Inneren einwirken können. D.h., daß exotherme und endotherme Reaktionen durch Temperaturänderungen beeinflußt werden können. Dieses dürfte im größeren Maßstab in den Halden eher eine geringe Rolle spielen, da in deren Kern durch die Größe und Kompaktheit ein eigenes Mikroklima herrschen dürfte. Dieses muß bei der Übertragung der Ergebnisse aus den Lysimeterversuchen auf den Haldenmaßstab mit berücksichtigt werden. Die beste negative Korrelation der Niederschlagsmenge zur elektrischen Leitfähigkeit hatte auch das Schwelgut aufzuzeigen. Die Dauer zwischen den Probenahmen spielt im allgemeinen keine Rolle, da geringe Korrelationskoeffizienten aufgezeigt werden. Eine Ausnahme stellt die Schlacke-Probe dar. Dieses könnte an der geringen Reaktivität der Schlacke liegen, deren Wirkung durch die längere Verweildauer der Niederschlagsmenge und den geringeren Versickerungsdruck durch nachströmendes Sickerwasser aufgehoben wird.

Der Abschnitt über die Grenzwerte beschäftigte sich mit der Frage, welche zeitliche Entwicklung der Auslaugungsprozeß nehmen wird und wie sich die Ergebnisse im Hinblick auf Grenzwertlisten (hier die Holland-Liste und Berliner Liste) bewerten lassen. Gleichzeitig wurde für jede Komponente im Eluat eine Untersuchung zur Spezies-Bestimmung vorangestellt. Dieses war für spätere weitergehende Untersuchungen wie Ionenbilanzierungen von Bedeutung. Fast alle Parameter überschreiten die Kategorie C der Holland-Liste bzw. der Berliner Liste für SO_4^{2-} und NO₃⁻. Dieses geschieht im Falle des Zinks und Kadmiums im Theisenschlamm und Schwelgut und für Kupfer im Schwelgut sogar um das 100- bis 10.000fache, respektive. Diese hohen Konzentrationen erklären sich aus der hohen Reaktivität der feinkörnigen Proben, dem daraus resultierenden niedrigen pH-Wert und den oxidierenden Bedingungen, die für eine große Mobilität der Schwermetalle besonders aus dem Theisenschlamm und dem Schwelgut sorgen. Die Konzentrationen nehmen fast überall gleich stetig ab und bilden im vierten Durchgang ein lokales Minimum aus. Nur Ca^{2+} und SO_4^{2-} in den Grauen Bergen und in

der Schlacke besitzen dort ein lokales Maximum. Die Ausbildung eines Minimums läßt sich mit den geringen Niederschlägen, aber auch den geringen Temperaturen (Frost) zu dieser Zeit erklären, die einen starken Rückgang der Verfügbarkeit des Lösungsmittels (Regenwasser) verursacht haben. Generell dürften viele Reaktionen bei niedrigeren Temperaturen auch langsamer ablaufen. Dabei könnte es auch zu Ausfällungen und Krustenbildungen gekommen sein (siehe Sekundärminerale wie Gips und Anglesit), die für eine Fixierung der Schwermetalle sorgen. Deren erneute Mobilisierung könnte aufgrund von kinetischen Hemmungen kaum oder nur verzögert ablaufen. Die Ausbildung des lokalen Maximums für Ca^{2+} und SO_4^{2-} im vierten Durchgang erklärt sich eventuell aus der Auflösung von Gipskrusten, die sich in den Grauen Bergen und der Schlacke gebildet haben könnten (MATHEIS und JAHN, 1996). Gips ist nur bis zu einem pH-Wert von 6,2 stabil. Der steigende pH-Wert in den Eluaten könnte ein Hinweis auf die immer stärker werdende Auflösung dieser Gipskrusten sein. Da die Herkunft der Nitrate in dieser Untersuchung nicht aus anthropogenen Belastungen abgeleitet werden kann (Düngemittel, Fäkalien), bleibt die Quelle des Nitrats nicht geklärt.

Eine Ionenbilanz ist zum Zwecke der Überprüfung der Qualität der chemischen Analyse durchgeführt worden. Der Kupferschiefer hat ein sehr gutes Kationen/Anionen-Gleichgewicht ausgebildet, bzw. die Analyse war gut, da sie alle Parameter richtig erfaßt hat. Für die Schlacke und die Grauen Berge ist ein Anionendefizit bzw. Kationenüberschuß festzustellen, der vermutlich durch die Alkalinität (HCO₃⁻), die nicht mit gemessen worden ist, verursacht worden ist. Es ist aber davon auszugehen, daß diese Spezies schon über das Regenwasser in das System geführt wird. Der Theisenschlamm und das Schwelgut weisen ein Kationendefizit auf. Die Ursache dafür könnte darin liegen, daß eventuell für Komplexierungen mehr Anionen benötigt werden.

Da hohe Konzentrationen an Ionen vorhanden sind und diese sich gegenseitig beeinflussen, sind Ionenaktivitäten berechnet worden, mit denen die folgenden hierarchischen Clusteranalysen durchgeführt worden sind.

Eine einfache hierarchische Clusteranalyse nach der gewichteten Mittelwert-Methode (DAVIS, 1986) ist hier zum Zwecke der Unterscheidung statistisch homogener Gruppen aufgrund deren relativer Ähnlichkeit durchgeführt worden. Neben der Aktivitäten der Spezies waren die Temperatur, die Niederschlagsmenge, der pH-Wert und die elektrische Leitfähigkeit Parameter, die in die Auswertung eingeflossen sind. Zunächst sei gesagt, daß die Überprüfung der durchgeführten Gruppierung durch die Bildung der cophenetischen Korrelationskoefizienten und deren Vergleich mit der originalen Korrelation durchweg gute Ergebnisse lieferte. Im folgenden soll nur auf die Schwermetalle näher eingegangen werden. Im Kupferschiefer ergab die hierarchische Clusteranalyse eine Gruppierung des Zinks mit dem Kalzium und dem pH-Wert. Dieses verdeutlicht den Einfluß, den der Karbonat-Anteil im Kupferschiefer auf den pH-Wert und damit auf die Freisetzung des Zinks hat. In der Schlacke-Probe wurden keine Schwermetallgehalte eluiert und es ist auch keine echte Gruppierung erkennbar. Dieses spiegelt das indifferente Verhalten der Schlacke während dieser Eluierungsversuche wieder, das schon beim Mobiliersierungsverhalten deutlich geworden ist. Die exzeptionelle Stellung des Parameters pH-Wert ist in der Clusteranalyse der Parameter in den Schlackeneluaten besonders zu erwähnen. Eine hohe Korrelation untereinander zeigen die Parameter in der Theisenschlamm-Probe. Umweltrelevante Metalle wie das Kadmium, das Zink, das Nickel bilden mit dem Sulfat als Anion eine Gruppe. Dieses zeigt das bevorzugte Auftreten mit dem Sulfat aus der Sulfidoxidierung in dieser Probe. Kupfer bildet mit Mangan eine Subgruppe und auch das Blei steht unabhängig von den übrigen Schwermetallen. Dieses dürfte daran liegen, daß Blei und in geringerem Maße auch Kupfer unter diesen Bedingungen schwerer löslich sind als Zink. Dieses verdeutlicht, daß Blei und Zink, die sich in der primären Dispersion als Sulfide ähnlich verhalten, in der sekundären Dispersion bei gleichen Eh-/pH-Bedingungen unterscheiden können. Im Unterschied zum Kupferschiefereluat hat das Kalzium, und damit der basisch wirkende Gips, keinen Einfluß. Dieses zeigt sich an der sehr geringen relativen Ähnlichkeit zu den Schwermetallclustern und auch zum pH-Wert als Parameter. Ähnliches ergibt sich auch aus dem Schwelguteluat, in dem Kalzium und Blei sogar einen Cluster bilden. Kupfer befindet sich jedoch hier im Kadmium-Zink-Nickel-Cluster. Diese höhere Mobilität ist vermutlich auf den deutlich niedrigeren pH-Wert im Schwelgut zurückzuführen. Das Eluat aus den Grauen Bergen weist keine Schwermetallgehalte auf. Der errechnete Kalzium-Magnesium-Sulfat-Cluster deutet auf die dolomitische Komponente in den Grauen Bergen hin, die ja u.a. dolomitische Kalksteine als Nebengesteine des Kupferschiefers darstellen und verdeutlicht die Effektivität dieser Gruppierungsmethode.

HOLMSTRÖM (1999) stellte bei Untersuchungen an sulfidhaltigen Haldenkomponenten unterschied-lichen Typs (mit und ohne Karbonat) fest, daß die karbonatfreiere Komponente mit der Zeit einen sehr niedrigen pH-Wert erreicht hat und hohe Schwermetallkonzentrationen freigab. Im Gegensatz dazu blieb der pH-Wert in der karbonathaltigen Komponente hoch und verhinderte eine Freisetzung der Schwermetalle. Ähnlich verhielten sich die Komponenten in dieser Untersuchung, jedoch erreichten die karbonatfreien Proben Theisenschlamm und das Schwelgut aufgrund ihrer Reaktivität einen sehr niedrigen initialen pH-Wert und damit eine sehr hohe Schwermetallfreisetzung, die sich wie in der genannten Untersuchung mit der Zeit verringerte.

Zusammenfassung und Ausblick

Um eine endgültige Gefährdungsabschätzung durchzuführen, werden an dieser Stelle noch einmal die Parameter, die die Mobilität von Schadstoffen beeinflussen, zusammenfassend genannt. Dabei wird versucht werden, auf das Gefährdungspotential der einzelnen Gruppen zu schließen.

Unter den physikalischen Parametern dominiert der Faktor Wasserwegsamkeit, der einen entscheidenden Einfluß auf die Lösung und Transport von Schadstoffen hat. Lagerungsdichte, Quellfähigkeit des abgelagerten Materials und die Niederschlagsrate steuern die Verfügbarkeit des Lösungsmittels Wasser. Dieses ist für die extrem feinkörnigen Proben des Theisenschlammes und des Schwelguts von besonderer Bedeutung. Es erlaubt eine gute Benetzung mit Wasser und chemische Reaktivität durch die großen Oberflächen. Die gute Klüftung in den Schlackehaldenkörpern eröffnen auch Wasserwegsamkeiten, die Schlacke reagiert jedoch aufgrund der im Glas eingeschlossenen Sulfidtröpfchen kaum mit den Atmosphärilien. Allerdings ergibt die Verteilung von Theisenschlamm-Suspensionen in den Haldenkörpern (Teich IX und Teich X) eine Gefährdung mit entsprechender Langzeitwirkung der Schwermetallfreisetzung. Der Kupferschiefer zeigt eine gute Spaltbarkeit entlang der Schichtung, erreicht damit auch eine sukzessive größer werdende Oberfläche und wäre damit aufgrund der physikalischen Parameter potentiell gefährdend. Die Grauen Berge liefern aufgrund ihrer Stückigkeit keine physikalisch bedingte Gefährdung. Obwohl zahlreiche Reaktionen zwischen Fest- und Lösungsphase kinetisch gehemmt relativ langsam ablaufen, spielte der Parameter Zeit bis auf die Schlacken-Probe keine Rolle. Alle anderen Komponenten zeigten sich sehr reaktiv, besonders der Theisenschlamm und das Schwelgut. Die Temperatur könnte aufgrund der geringen Größe der Eluierungsboxen einen Einfluß gehabt haben, wie gute Korrelationsergebnisse im Schwelgut zeigen. Die übrigen Proben verhalten sich dem Parameter Temperatur indifferent.

Chemische Parameter kontrollieren Lösungs- und Ausfällungsreaktionen zwischen der Festphase und dem Lösungsmittel Wasser. Zahlreiche Gleichgewichte sind über den pH-Wert und auch das Redox-Potential miteinander gekoppelt, wodurch diese beiden Größen eine zentrale Stellung bei der Betrachtung von Eluaten einnehmen. Sie steuern das chemische Milieu und damit die Mobilität sowie die Fixierung von Schwermetallkationen und -anionenkomplexen. Leider ist jedoch das Redox-Potential nicht mit gemessen worden. Wohl kann man jedoch von oxidierenden Bedingungen ausgehen, da die Eluate in ständigem Kontakt mit dem Luftsauerstoff standen. Adsorptive Bindungen bzw. Komplexbindungen können zusätzlich eine besondere Bedeutung spielen. Auch organische Verbindungen können Komplexierungsreaktionen hervorrufen und so zu einer zusätzlichen Mobilisierung führen. Die ersten chemischen Reaktionen stellen ein initiales Eh-pH-Milieu im Zusammenspiel von Auflösung, Ausfällung und Transport ein. Dieses kann eine Verminderung der Mobilisation von Schwermetallen bedeuten, aber auch eine Erhöhung (SCHEFFER & SCHACHTSCHABEL, 1982). Der Einfluß des pH-Wertes ist für die Proben Theisenschlamm und Schwelgut aufgrund der Sulfidoxidierung evident. Doch wie diese Untersuchung auch gezeigt hat, hat der Karbonatgehalt im geringen Maße im Kupferschiefer und besonders in den Grauen Bergen für höhere pH-Werte und eine Immobilisierung der Schwermetalle gesorgt (Pufferwirkung). Die Schlacke scheint sich bis auf die Kanten chemisch inert zu verhalten. Komplexierungen scheinen im organikreichen Theisenschlamm indiziert, wobei auch Fluoride eine Rolle zu spielen scheinen.

Die biologischen Parameter konnten in dieser Studie nicht berücksichtigt werden, dürften aber auch eine Rolle gespielt haben, da die meisten Redox-Gleichgewichte nach SCHEFFER & SCHACHTSCHABEL (1982) kinetisch gehemmte Reaktionen sind und ohne Katalyse in äußerst langen Zeiträumen ablaufen.

Besonders günstige geochemische Voraussetzungen (Milieubedingungen) für eine Schadstoffmobilität, Verfügbarkeit und damit der Gefahr einer Grundwasserkontamination mit Schwermetallen in Bereichen mit Versauerungstendenzen zeigen aufgrund der vorgestellten Ergebnisse die Proben Theisenschlamm und Schwelgut und haben einen hohen Sanierungsbedarf. Aus diesem Grunde ist der alte Theisenschlamm-Deponiestandort im Teich IX abgetragen worden. Der in dem klüftigen Schlackenhaldenkörper dispers verteilte Theisenschlamm stellt jedoch noch immer eine Gefährdung dar, die sich in sehr hohen Schwermetallkonzentrationen in den Sickerwasseraustritten ("Stadtborn-Quelle") zeigt. Zur Zeit werden diese in einer Neutralisationsanlage vom Zink gereinigt. Der entstandene Neutralisationsschlamm muß jedoch gesondert deponiert werden. Der Theisenschlamm aus dem alten Teich IX ist in eine Halde aus Grauen Bergen und wenig Kupferschiefer-Armerz unter Abdeckung mit Geotextilien umgelagert worden (Teich X). Im Falle eines Durchbruchs von Lösungen würde durch den hohen Anteil

an Karbonaten in dieser Halde ein Anstieg der Schwermetalle eher verhindert. Der Kupferschiefer folgt dem Theisenschlamm und dem Schwelgut auf einer niedrigeren Stufe der Gefährdungspriorität. da zum einen die Schwermetallfreisetzung deutlich geringer ist und zum anderen die Armerzhalden mit Halden der Grauen Berge, die kaum ein Gefährdungspotential darstellen, gemischt auftreten. Die Schlacke, die dem Volumen nach die größte Haldenkomponente im Raum Helbra darstellt, verhält sich chemisch nahezu inert und kann daher im Hinblick auf deren Nutzungsmöglichkeiten als Sekundärrohstoff (Strassenbau (Pflastersteine, Schottermaterial)) in Erwägung gezogen werden, solange es sich nicht um vom Theisenschlamm aus dem alten Teich IX durchsetztes Gut handelt. Aufgrund der Radiotoxizität der Schlacke wird diese nach einer in SCHRECK (1997) erwähnten Studie nicht für Wohnräume empfohlen.

Es sind weitergehende Untersuchungen nötig, die insbesondere die Fragen zur Wasserbilanzierung, der Temperatur, Eh und des jahreszeitlichen Klimaeinflusses beinhalten. Deshalb sollten die Versuche über den Zeitraum eines Jahres mit der Aufnahme aller verfügbaren klimatischen Daten fortgeführt werden, um genauere Aussagen zu Mobilisierungsvorgängen und Schadtoffpotential treffen zu können. Daneben sollten Schadstoffeinträge über den Niederschlag (nasse Deposition) und die Atmosphäre (trockene Deposition) sowie der pH-Wert des Niederschlages mit in eine Bilanzierung einbezogen werden. Generell sollte die Übertragbarkeit der Lysimeterversuche auf die Haldenkörper, dessen Heterogenitäten oder die Art der Beschickung der Lysimeterkisten mit dem Probenmaterial überprüft werden. Thermodynamische Überlegungen und Sättigungsberechnungen könnten anhand der erwarteten und anhand von Sekundärmineralen indizierten Reaktionen angestellt werden. Dabei wären auch die pH-, Eh- und Temperaturabhängigkeit der Stabilitätskonstanten zu berücksichtigen. Besonders wäre auch für die Aussagefähigkeit der hier vorgestellten Korrelationsanalyse zu bemerken, daß die Parameter aufgrund von nur 7 Werten (7 Durchgänge) miteinander korreliert worden sind. Eine bessere statistische Aussage wäre durch mehr Werte (und damit mehr Durchgänge) gegeben. Dieses sollte für ein eventuelles Folgeprojekt, das sich mit der multivariat-statistischen Analyse der Eluate beschäftigen sollte, mit bedacht werden.

Danksagung

Für die zur Verfügungstellung der Daten und studienbegleitende Unterstützung sei an dieser Stelle dem Betreuer dieser Arbeit, Herrn Priv. Doz. Dr. Matheis, gedankt. Besonderer Dank gebührt auch cand. geol. Michael Gunkel und Dipl. Geol. Oliver Brandt für unterstützende Diskussionen.

8. Literaturverzeichnis

APPELO, C.A.J., and POSTMA, D. (1993): Geochemistry, groundwater and pollution. – Balkema, Rotterdam, 536 S.

BROOKINS, D.G. (1988): Eh-pH-Diagrams for Geochemistry, Springer Verlag, Berlin, 176 S.

COX, D.P. and SINGER, D.A. (1992): Mineral Deposit Models. - USGS Bulletin 1693, 3rd Edition, 622 p.

DAVIS, J.C. (1986): Statistics and data analysis in geology. – 2. Auflage, Wiley, Berlin, 646 S.

DEUTSCH, W. J. (1997): Groundwater geochemistry, fundamentals and application to contamination. – Lewis Publishers, 221 S.

EISENÄCHER, W. und JÄGER, D. (1997): Die Verhüttung des Mansfelder Kupferschiefers unter besonderer Berücksichtigung der Verarbeitung von Rohhüttenschlacke. - - *In:* SCHRECK, P. und GLÄßER, W.: Reststoffe der Kupferschieferverhüttung, Teil 1: Mansfelder Kupferschlacken; UFZ-Bericht Nr. 23, S. 3-7.

HAMMER, J., RÖSLER, H.J. und NIESE, S. (1988): Besonderheiten der Spurenelementführung des Kupferschiefers der Sangerhäuser Mulde und Versuche ihrer Deutung. - Zeitschrift für angewandte Geologie, v. 34, no. 11, S. 339-343.

HOLMSTRÖM, H., LJUNGBERG, J., ÖHLANDER, B. (1999): Role of carbonates in mitigation of metal release from mining waste. Evidence from humidity cell tests. – Environmental Geology, 37 (4), S. 267-280.

Hsv (1995): Helbraer Schlackenverwertung GmbH & Co. KG. – Kurzdokumentation zur Situation der Verwertung der Mansfelder Kupferschlacke, 23 S.

JANKOWSKI, G. (1996): Zur Geschichte des Mansfelder Kupferschieferbergbaus. – GDMB, Clausthal-Zellerfeld, 366 S.

KNITZSCHKE, G. (1966): Zur Erzmineralisation, Petrographie, Hauptmetall- und Spurenelementführung des Kupferschiefers im SE-Harzvorland. – Freiberger Forschungshefte, C 207, 147 S. MARQUARDT, R. (1997): Mobilität und Transportwege von Schwermetallen deponierter Flugstäube (Theisenschlamm) aus Haldenkörpern der Rohhütte Helbra, Mansfelder Revier. – unveröffentlichte Diplomarbeit, TU Berlin, 90 S. + Anhang.

MATHEIS, G., JAHN, S. und DESPOTOVIC, P. (1996): Schwermetallmobilisierung und –migration in komplexen Haldenkörpern am Beispiel des Verhüttungsstandortes Helbra. – Abschlußbericht zum Kooperationsprojekt TU Berlin (FG Lagerstättenforschung) und UFZ Halle-Leipzig (Sektion Hydrogeologie), unveröffentlicht, 36 S. (+ Anhang).

MIBUS, J., DUNGER, C., DUNGER, V., HEBERT, D. (1996): Hydrogeologisch-geochemische Charakterisierung des Stoffaustrages aus Bergehalden des Mansfelder Kupferschieferbergbaus. – Geo Congress 1, Grundwasser und Rohstoffgewinnung, Vortrags- und Posterkurzfassungen der Tagung der Fachsektion Hydrogeologie der DGG, Freiberg, Sachsen im Mai 1996, Verlag Sven v. Loga, S. 336-341.

RENTZSCH, J. (1974): The Kupferschiefer in comparison with the deposits of the Zambian Copperbelt. – Centenaire de la Société géologique de Belgique, Gisements stratiformes et provinces cuprifères, Liège, S. 395-418.

RIEDEL, E. (1990): Allgemeine und anorganische Chemie. – 5. Auflage, DeGruyter, Berlin, 346 S.

SCHRECK, P. (1997): Schadstoffausträge aus den Halden der Kupferschieferverhüttung. - *In:* SCHRECK, P. und GLÄßER, W.: Reststoffe der Kupferschieferverhüttung, Teil 1: Mansfelder Kupferschlacken; UFZ-Bericht Nr. 23, S. 9-15.

SCHEFFER, R. und SCHACHTSCHABEL, P. (1982): Lehrbuch der Bodenkunde. – Enke Verlag, Stuttgart, 394 S.

TENHAEFF, M. (1993): Bewertung und Gefährdungsabschätzung von Bergehalden und Reststoffablagerungen des Kupferschieferbergbaus in der Mansfelder Mulde. – Diplomarbeit, RWTH Aachen, 145 S.

WAGENBRETH, O., STEINER, W. (1990): Geologische Streifzüge. – 4. Auflage, Deutscher Verlag für Grundstoffindustrie, Leipzig, 204 S.

WITZKE, T. (1997): Sekundärmineralbildungen in Kupferschlacke als Indikator für Schwermetallmobilisierung und –fixierung. - *In:* SCHRECK, P. und GLÄßER, W.: Reststoffe der Kupferschieferverhüttung, Teil 1: Mansfelder Kupferschlacken; UFZ-Bericht Nr. 23, S. 25-29.

Anhang 1: Haldenkomponenten (RFA)

Kupferschiefer	SiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	TiO ₂ [%]	$P_2O_5[\%]$	SO3[%]	Ag [ppm]	As [ppm]	Ba [ppm]	Bi [ppm]	Br [ppm]	Cd [ppm]	Cl [ppm]	Cu [ppm]
1	25,82	8,40	2,61	4,30	10,26	0,17	2,06	0,45	0,09	2,82	33	24	257	b.d.l.	6	57	72	4867
2	23,97	7,81	2,64	4,35	10,92	0,18	1,90	0,43	0,08	3,75	30	25	223	1	6	51	113	4496
3	25,41	8,08	2,66	4,28	10,75	0,16	1,95	0,43	0,08	4,00	25	25	315	1	6	50	41	3895
4	23,28	7,65	2,75	3,44	10,03	0,24	1,94	0,43	0,09	3,86	34	34	255	2	6	51	313	5795
Mean	24,62	7,99	2,67	4,09	10,49	0,19	1,96	0,44	0,09	3,61	31	27	263	1	6	52	135	4763
Minimum	23,28	7,65	2,61	3,44	10,03	0,16	1,90	0,43	0,08	2,82	25,0	24,0	223	1,0	6,0	50,0	41	3895
Maximum	25,82	8,40	2,75	4,35	10,92	0,24	2,06	0,45	0,09	4,00	34,0	34,0	315	2,0	6,0	57,0	313	5795
Standardabweichung	1,19	0,33	0,06	0,44	0,42	0,04	0,07	0,01	0,01	0,53	4,0	4,7	38,3	0,6	0,0	3,2	122	796
Theisenschlamm																		
1	-	22,99	3,63	0,77	6,71	6,71	9,79	2,42	0,70	31,57	246	6963	2585	235	b.d.l.	524	3751	10758
2	-	23,21	3,74	1,21	8,47	6,16	9,68	2,42	0,66	29,04	177	6116	2629	206	b.d.l.	402	1056	9284
3	-	22,99	3,63	0,77	8,36	5,17	10,01	2,53	0,68	29,98	195	6567	2761	178	b.d.l.	417	891	10384
4	-	24,31	5,84	0,88	5,39	6,82	9,68	2,42	0,73	34,30	238	7051	2596	227	b.d.l.	462	1122	10043
Mean	-	23,38	4,21	0,91	7,23	6,22	9,79	2,45	0,69	31,22	214	6674	2643	212	-	451	1705	10117
Minimum	-	22,99	5,63	0,77	5,39	5,17	9,68	2,42	0,66	29,04	1//	6116	2585	1/8	-	402	891	9284
Maximum	-	24,31	5,84	0.21	8,47	0,82	0.16	2,53	0,73	34,30	246	/051	2/61	235	-	524	3/51	10/58
Standardabweichung	-	0,05	1,09	0,21	1,47	0,75	0,10	0,00	0,05	2,30	33,5	428	81	23,5	-	54,8	1307	028
Graue Berge																		
1	33.85	11.14	2.63	2.55	14.90	0.40	2 97	0.56	0.09	0.50	1	4	246	h d l	bdl	12	b.d.l	195
2	32.17	10.59	2,05	2,33	14,50	0,40	2,97	0,50	0.09	0,30	h d l	5	240	b.d.1.	b.d.l.	10	b.d.1.	159
3	31.40	10,30	2,40	2 30	13,75	0.39	2,87	0.54	0.09	0.37	b.d.i.	7	230	b.d.l.	h d l	7	b.d.i.	160
4	30.96	10,16	2.37	2.34	13,60	0.35	2,76	0.53	0.08	0.35	b.d.l.	11	232	b.d.l.	b.d.l.	10	b.d.l.	148
Mean	32.10	10.55	2,48	2.40	14.20	0.38	2.86	0.55	0.09	0.40	1	7	236	-	-	10	-	166
Minimum	30.96	10.16	2.37	2.30	13.60	0.35	2.76	0.53	0.08	0.35	-	4.0	231.0	-	-	7.0	-	148.0
Maximum	33,85	11,14	2,63	2,55	14,90	0,40	2,97	0,56	0,09	0,50	-	11,0	246,0	-	-	12,0	-	195,0
Standardabweichung	1,27	0,43	0,11	0,11	0,63	0,02	0,09	0,01	0,00	0,07	-	3,1	6,8	-	-	2,1	-	20,4
Schlacke																		
1	32,35	8,76	3,84	4,43	13,50	0,55	2,34	0,54	0,12	0,32	4	2	1291	b.d.l.	2	b.d.l.	9	1637
2	32,42	8,78	4,14	4,24	13,56	0,53	2,32	0,54	0,13	0,30	4	2	1892	b.d.l.	1	b.d.l.	23	1619
3	32,05	8,76	4,00	4,36	13,45	0,57	2,34	0,54	0,12	0,32	6	6	1308	b.d.l.	2	3	16	1691
4	31,22	8,48	3,68	4,27	13,21	0,53	2,27	0,53	0,12	0,32	4	1	1283	b.d.l.	b.d.l.	1	20	1595
Mean	32,01	8,70	3,92	4,33	13,43	0,55	2,32	0,54	0,12	0,32	5	3	1444	-	2	2	17	1636
Minimum	31,22	8,48	3,68	4,24	13,21	0,53	2,27	0,53	0,12	0,30	4,00	1,00	1283	-	1,00	1,00	9,0	1595
Maximum	32,42	8,78	4,14	4,43	13,56	0,57	2,34	0,54	0,13	0,32	6,00	6,00	1892	-	2,00	3,00	23,0	1691
Standardabweichung	0,55	0,14	0,20	0,09	0,15	0,02	0,03	0,00	0,01	0,01	1,00	2,22	299	-	0,58	1,41	6,1	40,8
Schwelgut																		
1	-	21,45	4,51	0,77	2,20	2,97	8,14	2,20	0,73	16,59	389	12331	2706	589	b.d.l.	449	b.d.l.	2145
2	-	21,34	4,73	0,66	1,87	2,97	/,81	2,20	0,73	16,79	416	12584	2/61	611	b.d.l.	450	b.d.l.	2101
3	-	20,79	4,51	0,66	1,8/	3,08	/,48	2,09	0,67	16,19	421	12/2/	2519	625	b.d.l.	4/4	b.d.l.	2343
4	-	22,44	4,51	0,88	1,98	2,75	8,25	2,20	0,77	1/,57	437	12/05	2684	586	b.d.l.	455	b.d.l.	2167
Minimum	-	21,51	4,57	0,74	1,98	2,94	7.49	2,17	0,73	16,79	410	12587	2008	603	-	457	-	2189
Minimum	-	20,79	4,51	0,00	1,8/	2,75	/,48 8 25	2,09	0,67	10,19	389	12331	2519	580	-	449	-	2101
Iviaximum Stondondohmoioh	-	22,44	4,/5	0,88	2,20	5,08	0.25	2,20	0,77	1/,5/	43/	12/2/	2/01	025	-	4/4	-	2343
Standardabweichung	-	0,69	0,11	0,11	0,16	0,14	0,35	0,05	0,04	0,58	20,0	182	104	18,6	-	11,6	-	106

Anhang 1: Haldenkomponenten (RFA)

Kupferschiefer	Cr [ppm]	F [ppm]	Hg [ppm]	Mn [ppm]	Mo [ppm]	Ni [ppm]	Pb [ppm]	Rb [ppm]	Sb [ppm]	Se [ppm]	Sn [ppm]	Sr [ppm]	Th [ppm]	Tl [ppm]	U [ppm]	V [ppm]	Zn [ppm]	Zr [ppm]
1	b.d.l.	b.d.l.	1	1484	104	105	5097	94	18	16	59	341	3	4	17	490	10124	131
2	b.d.l.	b.d.l.	1	1478	95	102	4462	87	16	14	51	195	1	2	17	422	9604	121
3	b.d.l.	b.d.l.	1	1507	92	99	4816	89	14	16	54	605	b.d.l.	3	13	424	9865	123
4	b.d.l.	b.d.l.	1	1374	100	109	4478	87	16	18	52	290	b.d.l.	2	18	504	11011	119
Mean	-	-	1	1461	98	104	4713	89	16	16	54	358	2	3	16	460	10151	124
Minimum	-	-	1	1374	92	99	4462	87	14,0	14,0	51	195	1,0	2,0	13,0	422	9604	119
Maximum	-	-	1	1507	104	109	5097	94	18,0	18,0	59	605	3,0	4,0	18,0	504	11011	131
Standardabweichung	-	-	0	59,2	5,3	4,3	303	3,3	1,6	1,6	3,6	176	1,4	1,0	2,2	43,1	611	5,3
Theisenschlamm																		
1	187	b.d.l.	166	847	391	132	104445	385	2185	341	8422	165	68	158	35	385	88693	3322
2	187	b.d.l.	140	1100	298	143	88154	363	1837	284	6987	220	97	121	31	396	74789	3729
3	187	b.d.l.	146	858	283	121	95733	374	1924	295	7154	198	127	125	19	352	76164	3113
4	242	b.d.l.	171	946	348	132	94754	374	2255	326	8126	176	86	144	40	374	93082	3421
Mean	201	-	156	938	330	132	95772	374	2050	312	7672	190	95	137	31	377	83182	3396
Minimum	187	-	140	847	283	121	88154	363	1837	284	6987	165	68	121	19	352	74789	3113
Maximum	242	-	1/1	1100	391	143	104445	385	2255	341	8422	220	127	158	40	396	93082	3729
Standardabweichung	27,5	-	15,1	11/	49,3	9,0	6691	9,0	201	26,5	/09	24,4	24,7	17,2	9,0	19	9094	256
Crows Borres																		
	61	hdl	1	1664	4	20	804	120	•	hdl	15	162	6	h.d.1	1	75	2220	161
2	57	b.d.1.	1	1636	4	26	187	139	0	b.d.1.	13	102	6	b.d.1.	6	73	1473	101
3	67	b.d.l.	h d l	1556	3	20	540	135	5	b.d.1.	10	153	4	b.d.l	4	66	1475	155
4	57	b.d.l.	1	1543	3	29	/150	120	7	b.d.1.	10	155	5	b.d.l.	5	70	1329	151
Mean	61		1	1600	3	24	575	133	8	J.d.i.	12	156	5	J.d.i.	4	70	1607	155
Minimum	57.0		1.0	1543.0	3.0	24.0	459.0	129.0	6.0		10.0	151.0	4.0		1.0	66.0	1329	151
Maximum	67.0	-	1.0	1664.0	4.0	32.0	804.0	139.0	9.0	-	15.0	162.0	6.0	-	6.0	75.0	2220	161
Standardabweichung	4.7	-	0.0	59.4	0.5	3.5	157.4	4.5	1.3	-	2.2	5.1	1.0		2.2	4.1	413	4.4
~	.,,		.,.			- ,-		.,.	-,.				-,.			.,-		.,
Schlacke																		
1	233	b.d.l.	1	2295	72	63	168	106	9	b.d.l.	62	332	5	b.d.l.	43	593	2860	161
2	342	b.d.l.	1	2451	75	70	180	107	11	b.d.l.	70	367	4	b.d.l.	47	553	2728	163
3	197	b.d.l.	1	2363	80	74	180	107	11	b.d.l.	79	336	5	b.d.l.	42	611	2893	162
4	159	b.d.l.	1	2249	69	60	160	103	8	b.d.l.	60	334	7	b.d.l.	41	571	2670	158
Mean	233	-	1	2340	74	67	172	106	10	-	68	342	5	-	43	582	2788	161
Minimum	159	-	1	2249	69,0	60,0	160	103	8,0	-	60,0	332	4,0	-	41,0	553	2670	158
Maximum	342	-	1	2451	80,0	74,0	180	107	11,0	-	79,0	367	7,0	-	47,0	611	2893	163
Standardabweichung	78,9	-	0	87,9	4,7	6,4	9,8	1,9	1,5	-	8,7	16,6	1,3	-	2,6	25,3	106	2,2
Schwelgut																		
1	198	4070	286	528	539	88	140349	396	3740	602	16070	110	86	206	25	396	15268	3619
2	187	4092	296	528	561	88	145145	385	3879	622	16852	88	31	204	7	418	15576	3443
3	220	3454	305	561	554	88	148379	429	4001	628	17007	88	77	226	b.d.l.	396	15488	3619
4	187	4158	295	561	562	99	144639	407	3858	607	16739	88	84	217	17	429	15444	2915
Mean	198	3944	296	545	554	91	144628	404	3870	615	16667	94	70	213	16	410	15444	3399
Minimum	187	3454	286	528	539	88,0	140349	385	3740	602	16070	88,0	31,0	204	7,0	396	15268	2915
Maximum	220	4158	305	561	562	99,0	148379	429	4001	628	17007	110	86,0	226	25,0	429	15576	3619
Standardabweichung	15,6	328,5	7,8	19,1	10,6	5,5	3299	18,8	107	12,3	413	11,0	26,0	10,2	9,0	16,5	130	333

Anhang 2: Tiefenprofile in Laugungsboxen (RFA)

	SiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	TiO ₂ [%]	P ₂ O ₅ [%]	SO ₃ [%]	Ag [ppm]	As [ppm]	Ba [ppm]	Bi [ppm]	Br [ppm]	Cd [ppm]	Cl [ppm]	Co [ppm]	Cu [ppm]
Kupferschiefer																			
ungelaugt (mean)	24,62	7,99	2,67	4,09	10,49	0,19	1,96	0,44	0,09	3,61	31	27	263	1	6,0	52	135	47	4763
oben	29,14	8,97	2,69	5,02	10,51	0,19	2,19	0,48	0,09	2,00	26	31	239	< 3	6,4	48	50	34	4380
Mitte	24,52	7,82	2,49	4,12	12,40	0,12	1,86	0,43	0,08	4,13	20	21	209	< 3	5,3	64	< 40	37	2970
unten	24,51	7,93	2,44	3,98	11,48	0,14	1,90	0,43	0,08	3,29	22	23	238	< 3	5,3	44	< 40	36	3100
Theisenschlamm																			
ungelaugt (mean)		23,38	4,21	0,91	7,23	6,22	9,79	2,45	0,69	31,22	214	6674	2643	212	-	451	1705	72	10117
oben	-	1,30	2,00	0,20	0,50	< 0,1	0,20	0,10	0,15	14,91	292	6040	320	234	15	535	< 40	50	10800
Mitte	-	< 0,1	1,90	0,10	0,50	< 0,1	0,20	0,10	0,11	10,88	235	5270	260	236	3	475	< 40	50	8600
unten	-	1,20	1,90	0,10	0,70	< 0,1	0,10	0,10	0,12	13,08	215	5210	290	239	< 3	465	< 40	20	9300
Graue Berge																			
ungelaugt (mean)	32.10	10.55	2.48	2.40	14.20	0.38	2.86	0.55	0.09	0.40	1.0	7	236	-	-	10	-	9	166
oben	32.37	10.95	2.71	2.76	14.07	0.41	2.90	0.56	0.09	0.48	3.0	35	259	< 3	< 3	20	< 40	11	265
Mitte	33.97	11.61	2.68	2.38	13.37	0.36	3.06	0.59	0.10	0.38	4.3	30	286	< 3	< 3	19	< 40	12	420
unten	34,08	11,57	2,75	2,60	13,11	0,37	3,06	0,59	0,09	0,34	2,9	48	274	< 3	< 3	15	< 40	14	550
Schlacke																			
ungelaugt (mean)	32.01	8.70	3.92	4.33	13.43	0.55	2.32	0.54	0.12	0.32	5.0	3	1444	-	2	2	17	69	1636
oben	35,59	9,77	3,45	4,95	14,81	0,66	2,54	0,58	0,13	0,40	3,8	<7	1020	< 3	< 3	< 4	40	59	1670
Mitte	35,46	9,71	3,73	4,74	14,55	0,61	2,52	0,58	0,12	0,38	4,8	<7	1300	< 3	< 3	< 4	< 40	66	1840
unten	34,55	9,17	5,48	4,35	13,84	0,53	2,33	0,56	0,13	0,29	2,2	11	2860	< 3	3	< 4	53	108	1660
Schwelgut																			
ungelaugt (mean)		21,51	4,57	0,74	1,98	2,94	7,92	2,17	0,73	16,79	416	12587	2668	603	-	457	-	33	2189
oben	8,14	1,6	3,40	0,30	0,10	< 0,1	< 0,05	0,2	0,24	7,73	409	13700	480	550	12	440	< 40	30	1900
Mitte	6,98	2,6	3,30	0,30	0,05	< 0,1	< 0,05	0,2	0,33	8,86	409	11250	540	570	26	440	< 40	40	1600
unten	6,77	2,6	3,60	0,50	0,05	< 0,1	< 0,05	0,2	0,32	9,22	437	12000	580	620	19	440	< 40	30	1700

Anhang 2: Tiefenprofile in Laugungsboxen (RFA)

	Cr [ppm]	F [ppm]	Hg [ppm]	Mn [ppm]	Mo [ppm]	Ni [ppm]	Pb [ppm]	Rb [ppm]	Sb [ppm]	Se [ppm]	Sn [ppm]	Sr [ppm]	Th [ppm]	Tl [ppm]	U [ppm]	V [ppm]	Zn [ppm]	Zr [ppm]
Kupferschiefer																		
ungelaugt (mean)	-	-	1	1461	98	104	4713	89	16,0	16,0	54	358	2,0	3,0	16,0	460	10151	124
oben	23	b.d.l.	< 2	1700	84	84	4210	102	12,6	15,5	53	141	13,2	3,4	14,5	360	8523	141
Mitte	14	b.d.l.	< 2	1540	97	103	5730	91	14,9	19,4	66	169	18,3	4,4	14,5	401	12858	125
unten	19	b.d.l.	< 2	1610	76	90	4160	93	15,1	14,5	53	177	13,7	2,6	12,7	350	9482	122
Theisenschlamm																		
ungelaugt (mean)	201	-	156	938	330	132	95772	374	2050	312	7672	190	95	137	31	377	83182	3396
oben	100	b.d.l.	210	430	365	60	90500	210	2770	350	10230	< 10	130	175	47	160	98040	140
Mitte	40	b.d.l.	180	250	300	40	86400	170	2380	300	9070	< 10	130	150	35	150	73770	140
unten	60	b.d.l.	200	300	310	80	87300	170	2720	300	9360	< 10	110	170	21	140	81210	130
Graue Berge																		
ungelaugt (mean)	61	-	1	1600	3.0	28	575	133	8.0	-	12	156	5.0	-	4.0	71	1607	155
oben	61	b.d.l.	< 2	1650	9,3	39	1630	136	10,7	3,5	30	165	12,6	< 2,5	< 4	109	2432	152
Mitte	68	b.d.l.	< 2	1670	10,8	39	1700	145	10,9	3,0	38	164	12,9	< 2,5	8,8	113	2925	158
unten	74	b.d.l.	< 2	1625	7,3	40	1430	144	9,2	< 3	37	165	10,9	< 2,5	7,4	98	2661	164
Schlacke																		
ungelaugt (mean)	233	-	1	2340	74	67	172	106	10,0	-	68	342	5,0	-	43	582	2788	161
oben	71	b.d.l.	< 2	2300	76	51	205	113	5,5	< 3	48	347	13,7	< 2,5	46	615	3285	174
Mitte	137	b.d.l.	< 2	2350	74	67	109	115	5,6	< 3	57	351	12,4	< 2,5	44	622	2950	173
unten	468	b.d.l.	< 2	2760	90	110	225	109	9,5	< 3	108	419	9,3	< 2,5	50	555	3200	170
Schwelaut																		
ungelaugt (mean)	198	3944	296	545	554	91	144628	404	3870	615	16667	94	70	213	16	410	15444	3399
oben	100	b.d.l.	310	250	510	30	139800	230	4080	590	16640	< 10	172	280	30	220	12750	190
Mitte	110	b.d.l.	315	230	490	30	133800	220	4130	550	16520	< 10	172	255	7	270	10900	170
unten	80	b.d.l.	310	280	510	40	136400	250	4090	590	16790	< 10	178	265	30	290	11790	180

Anhang 3: Elementgehalte und physikalisch-chemische Parameter aus Eluaten

Elu	atanalysen		[m	g/l]					[pt	om]						[mg/l]				[µS/cm]	[mg/l]
	Durchgang	Na^+	K ⁺	Mg ²⁺	Ca ²⁺	As	Cd	Co	Cu	Mn	Ni	Pb	Zn	F.	Cl ·	Br [·]	NO ₃ [·]	SO4 2-	pН	LF	TDS
	1	42,2	43,6	169	508	-	< 0,1	< 0,1	0,18	0,53	< 0,05	< 0,1	6,20	1,80	53,4	1,10	69,3	1986	6,52	3250	2275
	2	12,1	26,3	79,0	524	< 0,02	< 0,1	< 0,1	0,20	0,20	< 0,05	< 0,1	8,43	1,50	6,40	0,23	12,3	1667	6,30	2520	1764
S	3	8,50	27,2	68,0	531	< 0,02	< 0,1	< 0,1	< 0,1	0,20	< 0,05	< 0,1	9,38	1,50	7,30	0,17	12,7	1605	6,87	2840	1988
5	4	3,50	15,0	38,3	366	< 0,02	< 0,1	< 0,1	< 0,1	0,18	< 0,05	< 0,1	10,2	0,90	2,10	< 0,05	6,10	1080	6,70	1758	1231
O	5	1,80	13,4	17,1	380	< 0,02	< 0,1	< 0,1	< 0,1	0,22	< 0,05	< 0,1	9,52	0,90	1,40	< 0,05	6,40	1029	7,07	315	221
	6	1,60	14,7	11,8	577	< 0,02	< 0,1	< 0,1	< 0,1	0,17	< 0,05	< 0,1	9,63	0,90	2,20	< 0,05	5,90	1528	7,26	483	338
	7	1,20	11,1	7,80	498	< 0,02	< 0,1	< 0,1	< 0,1	0,13	< 0,05	< 0,1	6,34	0,68	2,20	< 0,05	4,20	1327	7,32	424	297
	1	13,2	23,6	4,60	58,40	-	< 0,1	< 0,1	< 0,1	0,53	< 0,05	< 0,1	< 0,1	1,10	28,9	< 0,05	16,9	105	7,50	854	598
	2	2,80	5,80	1,90	36,50	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,90	2,50	< 0,05	12,3	49,1	6,63	420	294
	3	2,10	4,50	1,90	57,80	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,70	2,40	< 0,05	8,40	95,1	7,50	396	277
ch	4	1,20	2,30	1,30	59,00	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,60	1,20	< 0,05	6,10	93,8	7,50	305	214
S	5	1,20	2,70	1,10	47,30	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	0,19	0,68	1,50	< 0,05	12,0	48,5	7,40	56,4	39,5
	6	1,00	2,00	0,60	27,20	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,62	1,60	< 0,05	6,20	21,5	7,90	34,3	24,0
	7	0,90	2,10	0,50	21,30	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,55	1,60	< 0,05	4,60	16,6	7,89	28,1	19,7
	1	171	575	385	376	-	9,30	3,80	0,34	>> 20	6,50	4,40	5270	20,5	337	3,60	23,0	14126	4,20	12340	8638
	2	149	635	360	391	0,24	11,8	3,55	0,18	49,5	7,70	5,81	6370	21,0	283	3,30	14,3	15360	4,33	12760	8932
	3	118	605	283	391	0,16	10,6	3,41	0,12	42,7	7,30	4,92	5910	21,0	266	2,90	9,00	12323	4,86	10930	7651
he	4	66,3	351	146	182	< 0,02	4,96	1,66	< 0,1	21,6	3,10	1,11	2980	11,9	111	1,60	3,00	7580	5,70	6100	4270
Т	5	77,0	456	193	185	< 0,02	5,91	1,87	< 0,1	25,5	3,60	2,57	3120	14,6	134	1,83	5,60	11783	5,73	1985	1390
	6	44,9	345	96,4	456	< 0,02	3,78	0,96	< 0,1	12,8	2,00	2,46	2022	19,0	65,1	1,10	5,80	7196	6,07	1303	912
	7	38,7	373	85,1	462	< 0,02	3,55	0,86	< 0,1	10,5	1,70	3,11	1641	21,0	51,3	1,10	4,60	6588	6,19	1213	849
	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	12,0	68,9	21,4	481,8	0,44	0,89	0,28	98,0	2,42	0,38	2,26	522	-	32,9	0,15	10,3	4180	2,69	-	-
≥	3	11,6	56,7	22,9	464,4	0,45	0,97	0,31	125,4	2,79	0,47	2,41	601	20,0	15,2	0,14	10,5	4150	2,65	4560	3192
ch	4	3,90	21,0	11,2	223,2	0,17	0,33	0,11	44,0	1,49	0,17	0,89	194	11,0	5,20	0,06	4,70	1892	2,80	1945	1362
Š	5	7,20	34,6	20,8	410,3	0,25	0,50	0,21	48,0	2,93	0,24	2,09	283	16,5	10,4	0,34	11,0	4170	3,19	592	414
	6	4,10	24,4	9,70	526,2	0,24	0,25	0,12	22,2	1,42	0,11	2,31	113	8,30	6,40	0,34	7,90	3643	2,96	689	482
	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1	15,3	23,4	29,6	103,9	-	< 0,1	< 0,1	< 0,1	0,53	< 0,05	< 0,1	< 0,1	0,50	54,3	0,10	114,4	208	6,72	1690	1183
	2	3,30	8,90	16,5	55,4	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,70	9,10	< 0,05	41,8	109	6,47	1430	1001
~:	3	2,90	5,00	17,6	56,5	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,70	4,40	< 0,05	37,3	101	6,40	700	490
L.E	4	2,30	2,30	25,7	76,6	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,50	2,70	< 0,05	27,8	180	6,70	566	396
G	5	1,50	2,20	16,4	53,6	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,68	1,70	< 0,05	20,6	79,4	7,72	85,6	59,9
	6	1,30	2,00	13,4	42,9	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,68	2,10	< 0,05	16,1	59,2	7,77	71,2	49,8
	7	1,00	1,90	8,80	28,6	< 0,02	< 0,1	< 0,1	< 0,1	< 0,1	< 0,05	< 0,1	< 0,1	0,68	1,80	< 0,05	7,80	31,2	7,99	49,3	34,5

Anhang 4: Verteilung der Elementgehalte in Lysimeterkisten im Vergleich

Abb. 2: K₂O

Abb. 1: Na₂O

Abb. 5: SO₃

Abb. 6: Arsen (As)

Abb. 3: MgO

Abb. 4: CaO

Abb. 8: Kobalt (Co)

Anhang 4: Verteilung der Elementgehalte in Lysimeterkisten im Vergleich

Mn/Mittelwert (mean)

1,41,21,00,80,40,20,0

mean

oben

Mitte

unten

Thei

· Gr.B. 🔸

Schl -

-Schw

Abb. 10: Mangan (Mn)

φ

Abb. 11: Nickel (Ni)

Abb. 13: Zink (Zn)

Abb. 7: Co in den Eluaten

Abb. 8: Cu in den Eluaten

Abb. 11: Pb in den Eluaten

Abb. 12: Zn in den Eluaten

Abb. 15: Br⁻ in den Eluaten

Abb. 16: NO_3^- in den Eluaten

Abb. 17: SO₄²⁻ in den Eluaten

Anhang 6: Eh-pH-Diagramme (aus BROOKINS, 1988)

1.2

Abb. 1: Arsen (As)

SYSTEM Co-S-C-O-H

Abb. 2: Kadmium (Cd)

Abb. 3: Kobalt (Co)

Abb. 7: Blei (Pb)

Abb. 8: Zink (Zn)

Anhang 7: Nachweisgrenzen für das RFA-Meßprogramm "Powder 1"

Hauptelemente:

Nebenelemente:

SiO ₂	0,20 – 90,00 Gew%
Al_2O_3	0,10 – 60,00 Gew%
Fe_2O_3	0,02 – 75,00 Gew%
MgO	0,10 – 40,00 Gew%
CaO	0,10 – 55,00 Gew%
Na ₂ O	0,10 – 10,00 Gew%
K ₂ O	0,02 – 13,00 Gew%

Mn	40 – 25.000 ppm
TiO ₂	0,02 – 4,00 Gew%
P_2O_5	0,01 – 8,00 Gew%
SO_3	0,01 – 57,00 Gew%

Spurenelemente: [ppm]

Ag	2	_	200
As	7	_	4.000
Ba	20	_	4.000
Bi	3	_	1.400
Cd	4	_	500
Cl	100	_	40.000
Co	4	_	200
Cr	10	_	18.000
Cu	4	_	1.300
F	600	_	35.000
Ga	3	_	100
Hg	2	_	30
Mo	5	_	300
Ni	10	_	3.000
Pb	10	_	5.000
Rb	5	_	3.500
Sb	3	_	400
Se	3	_	40
Sn	10	_	7.000
Sr	10	_	4.600
Th	8	_	1.000
Tl	2,5	_	35
U	5	_	650
V	10	_	600
W	10	_	11.000
Zn	10	_	25.000
Zr	10	_	11.000

Durchgang 1 (Kupfer	schiefer)														_	_	
	Na⁺	K	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO_3	F.	Br [·]	H ₂ AsO ₄
Konzentration [mg/l]	42,20	43,60	169,30	507,70	-	-	0,18	0,53	-	-	6,20	53,40	1986	69,30	1,80	1,10	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	1,84	1,12	6,97	12,66	-	-	0,003	0,01	-	-	0,09	1,50	20,67	1,12	0,09	0,01	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	1,84	1,12	13,93	25,32	-	-	0,01	0,02	-	-	0,19	1,50	41,33	1,12	0,09	0,01	-
Ionenstärke =	0,084																
Aktivitätskoeff. g	0,792	0,792	0,393	0,393	0,393	0,393	0,393	0,393	0,393	0,393	0,393	0,792	0,393	0,792	0,792	0,792	0,792
log Aktiv. [mol/l]	-2,838	-3,054	-2,562	-2,303	-	-	-5,953	-5,421	-	-	-4,428	-2,924	-2,090	-3,053	-4,125	-4,962	-
								TDS [mg/] =	2275		SIon [mg/l]]=	2881			
	Skat	42,42															
	San	44,06	lonenbila	anz [%] =		-1,90		Vergleic	h TDS mi	t Analyse	[%] =			79,0			
Durchgang 2 (Kupfer	schiefer)																
	Na ⁺	\mathbf{K}^{+}	Mg^{2+}	Ca ^{∠+}	\mathbf{Cd}^{2^+}	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ^{∠+}	Zn ⁴⁺	Cl.	SO4 2-	NO ₃	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	12,10	26,30	79,00	523,80	-	-	0,20	0,20	-	-	8,43	6,40	1667	12,30	1,50	0,23	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0.53	0.67	3.25	13.06	-	_	0.003	0.004	_	_	0.13	0.18	17.35	0.20	0.08	0.003	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,53	0,67	6,50	26,12	-	-	0,01	0,01	-	-	0,26	0,18	34,70	0,20	0,08	0,003	-
Ionenstärke =	0,068																
Aktivitätskoeff. g	0.804	0.804	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.804	0.417	0.804	0.804	0.804	H ₂ AsO ₄
log Aktiv. [mol/l]	-3,374	-3,267	-2,868	-2,264	-	-	-5,882	-5,819	-	-	-4,270	-3,839	-2,141	-3,798	-4,198	-5,636	-
								TDS [ma/	1=	1764		SIon [mg/l]	1=	2337			
	Skat	34,10							-				-				
	San	35,16	lonenbila	anz [%] =		-1,53		Vergleic	h TDS mi	t Analyse	[%] =			75,5			
Durchgang 3 (Kupfer	schiefer)																
	Na ⁺	K⁺	Mg^{2+}	Ca⁺⁺	Cd⁴⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ⁴⁺	Cl.	SO4	NO ₃	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	8,50	27,20	68,00	530,60	-	-	-	0,20	-	-	9,38	7,30	1605	12,70	1,50	0,17	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,37	0,70	2,80	13,23	-	-	-	0,004	-	-	0,14	0,21	16,70	0,20	0,08	0,002	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,37	0,70	5,60	26,46	-	-	-	0,01	-	-	0,29	0,21	33,40	0,20	0,08	0,00	-
Ionenstärke =	0,067																
Aktivitätskoeff. g	0,805	0,805	0,420	0,420	0,420	0,420	0,420	0,420	0,420	0,420	0,420	0,805	0,420	0,805	0,805	0,805	0,805
log Aktiv. [mol/l]	-3,526	-3,252	-2,930	-2,255	-	-	-	-5,815	-	-	-4,220	-3,781	-2,154	-3,783	-4,197	-5,766	-
								TDS [mg/] =	1988		SIon [mg/l]]=	2270			
	Skat San	33,42 33,90	lonenbila	anz [%] =		-0,71		Vergleic	h TDS mi	t Analyse	[%] =			87,6			

Durchgang 4 (Kupfer	rschiefer)																
	Na⁺	\mathbf{K}^{+}	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co2+	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ⁴⁺	CI.	SO4 2-	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	3,50	15,00	38,30	366,1	-	-	-	0,18	-	-	10,21	2,10	1080	6,10	0,90	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,15	0,38	1,58	9,13	-	-	-	0,00	-	-	0,16	0,06	11,24	0,10	0,05	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,15	0,38	3,15	18,26	-	-	-	0,01	-	-	0,31	0,06	22,48	0,10	0,05	-	-
Ionenstärke =	0,045																
Aktivitätskoeff. g	0,828	0,828	0,471	0,471	0,471	0,471	0,471	0,471	0,471	0,471	0,471	0,828	0,471	0,828	0,828	0,828	0,828
log Aktiv. [mol/l]	-3,899	-3,498	-3,130	-2,367	-	-	-	-5,812	-	-	-4,134	-4,310	-2,277	-4,089	-4,406	-	-
								TDS [mg/	I] =	1231		SIon [mg/l]] =	1522			
	Skat	22,27															
	San	22,68	lonenbila	anz [%] =		-0,93		Vergleic	h TDS mi	t Analyse	[%] =			80,8			
Durchgang 5 (Kupfer	rschiefer)																
	Na ⁺	K ⁺	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	1,80	13,40	17,10	380,4	-	-	-	0,22	-	-	9,52	1,40	1029	6,40	0,90	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,08	0,34	0,70	9,49	-	-	-	0,00	-	-	0,15	0,04	10,71	0,10	0,05	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,08	0,34	1,41	18,97	-	-	-	0,01	-	-	0,29	0,04	21,42	0,10	0,05	-	-
Ionenstärke =	0,042																
Aktivitätskoeff. g	0,831	0,831	0,477	0,477	0,477	0,477	0,477	0,477	0,477	0,477	0,477	0,831	0,477	0,831	0,831	0,831	0,831
log Aktiv. [mol/l]	-4,187	-3,545	-3,474	-2,344	-	-	-	-5,719	-	-	-4,158	-4,484	-2,292	-4,067	-4,405	-	-
								TDS [mg/	I] =	220		SIon [mg/l] =	1460			
	Skat	21,10															
	San	21,61	lonenbila	anz [%] =		-1,20		Vergleic	h TDS mi	t Analyse	[%] =			15,1			
Durchgang 6 (Kupfer	rschiefer)		/-				a (b	/-			-	<i>с</i> т.					
	Na	K	Mg	Ca	Cd	Co	Cu	Mn ²	NI ²	Pb ⁻	Zn	CI	SO ₄	NO ₃	F	Br	H ₂ AsO ₄
Konzentration [mg/l]	1,60	14,70	11,80	576,8	-	-	-	0,17	-	-	9,63	2,20	1528	5,90	0,90	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,07	0,38	0,49	14,38	-	-	-	0,003	-	-	0,15	0,06	15,90	0,10	0,05	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,07	0,38	0,97	28,77	-	-	-	0,01	-	-	0,29	0,06	31,80	0,10	0,05	-	-
Ionenstärke =	0,062																
Aktivitätskoeff. g	0,809	0,809	0,429	0,429	0,429	0,429	0,429	0,429	0,429	0,429	0,429	0,809	0,429	0,809	0,809	0,809	0,809
log Aktiv. [mol/l]	-4,249	-3,517	-3,682	-2,210	-	-	-	-5,877	-	-	-4,200	-4,300	-2,167	-4,114	-4,417	-	-
								TDS [mg/	I] =	338		SIon [mg/l] =	2151			
	Skat	30,49	lononbil	onz 1%1		-2 /2		Voraloio	h TDS mi	t Analysa	r%1 -			157			
	Jan	32,00		an n∠ [/0] ≓		-2,40		vergielc	וווו כעו וו	<i>r</i> ualyse	L/0] =			13,1			

Durchgang 7 (Kupfer	schiefer)																
	Na ⁺	\mathbf{K}^{+}	Mg^{2+}	Ca ²⁺	Cd²⁺	Co2+	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO ₃	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	1,20	11,10	7,80	497,8	-	-	-	0,13	-	-	6,34	2,20	1327	4,20	0,68	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,05	0,28	0,32	12,41	-	-	-	0,002	-	-	0,10	0,06	13,81	0,07	0,04	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,05	0,28	0,64	24,83	-	-	-	0,005	-	-	0,19	0,06	27,61	0,07	0,04	-	-
Ionenstärke =	0,054																
Aktivitätskoeff. g	0,818	0,818	0,447	0,447	0,447	0,447	0,447	0,447	0,447	0,447	0,447	0,818	0,447	0,818	0,818	0,818	0,818
log Aktiv. [mol/l]	-4,370	-3,634	-3,843	-2,256	-	-	-	-5,975	-	-	-4,363	-4,295	-2,209	-4,257	-4,534	-	-
								TDS [mg/	I] =	297		SIon [mg/l]] =	1858			
	Skat	26,00															
	San	27,78	lonenbila	anz [%] =		-3,30		Vergleic	h TDS mit	t Analyse	[%] =			16,0			
Durchgang 1 (Schlad	:ke)																
	Ńa⁺	\mathbf{K}^{+}	Mg^{2+}	Ca ²⁺	\mathbf{Cd}^{2^+}	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO ₃	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	13,20	23,60	4,60	58,40	-	-	-	0,53	-	-	-	28,9	104,8	16,90	1,10	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,57	0,60	0,19	1,46	-	-	-	0,01	-	-	-	0,81	1,09	0,27	0,06	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,57	0,60	0,38	2,91	-	-	-	0,02	-	-	-	0,81	2,18	0,27	0,06	-	-
Ionenstärke =	0,007																
Aktivitätskoeff. g	0,918	0,918	0,709	0,709	0,709	0,709	0,709	0,709	0,709	0,709	0,709	0,918	0,709	0,918	0,918	0,918	0,918
log Aktiv. [mol/l]	-3,278	-3,257	-3,872	-2,986	-	-	-	-5,165	-	-	-	-3,127	-3,112	-3,602	-4,275	-	-
								TDS [mg/	I] =	598		SIon [mg/l]] =	252			
	Skat	4,49															
	San	3,33	lonenbila	anz [%] =		14,9		Vergleic	h TDS mit	t Analyse	[%] =			237			
Durchgang 2 (Schlad	:ke)																
	Na ⁺	K⁺	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co2+	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	2,80	5,80	1,90	36,5	-	-	-	-	-	-	-	2,50	49,10	12,3	0,90	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,12	0,15	0,08	0,91	-	-	-	-	-	-	-	0,07	0,51	0,20	0,05	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,12	0,15	0,16	1,82	-	-	-	-	-	-	-	0,07	1,02	0,20	0,05	-	-
Ionenstärke =	0,003																
Aktivitätskoeff. g	0,940	0,940	0,779	0,779	0,779	0,779	0,779	0,779	0,779	0,779	0,779	0,940	0,779	0,940	0,940	0,940	0,940
log Aktiv. [mol/l]	-3,941	-3,856	-4,215	-3,149	-	-	-	-	-	-	-	-4,179	-3,400	-3,730	-4,352	-	-
	•							TDS [mg/	I] =	295		SIon [mg/l]] =	112			
	Skat San	2,25 1,34	lonenbila	anz [%] =		25,4		Vergleic	h TDS mit	t Analyse	[%] =			264			

Durchgang 3 (Schlad	:ke)																
	Na⁺	\mathbf{K}^{+}	Mg ^{∠+}	Ca ^{⊥+}	Cd ²⁺	Co2+	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO ₃ ⁻	F.	Br '	H ₂ AsO ₄
Konzentration [mg/l]	2,10	4,50	1,90	57,8	-	-	-	-	-	-	-	2,40	95,1	8,40	0,70	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,09	0,12	0,08	1,44	-	-	-	-	-	-	-	0,07	0,99	0,14	0,04	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,09	0,12	0,16	2,88	-	-	-	-	-	-	-	0,07	1,98	0,14	0,04	-	-
Ionenstärke =	0,005																
Aktivitätskoeff. g	0.926	0.926	0.734	0.734	0.734	0.734	0.734	0.734	0.734	0.734	0.734	0.926	0.734	0.926	0.926	0.926	0.926
log Aktiv. [mol/l]	-4,073	-3,972	-4,241	-2,975	-	-	-	-	-	-	-	-4,204	-3,139	-3,902	-4,467	-	-
								TDS [mg/	1] =	277		SIon [mg/l]=	173			
	Skat	3,25							•				•				
	San	2,22	lonenbila	anz [%] =		18,8		Vergleic	h TDS mit	t Analyse	[%] =			160			
Durchgang 4 (Schlad	ke)																
	´ Na⁺	\mathbf{K}^{+}	Mg^{2+}	Ca ²⁺	\mathbf{Cd}^{2^+}	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO ₃ ⁻	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	1,20	2,30	1,30	59,0	-	-	-	-	-	-	-	1,20	93,8	6,10	0,60	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0.05	0.06	0.05	1,47	-	-	-	-	-	-	_	0.03	0,98	0,10	0.03	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,05	0,06	0,11	2,94	-	-	-	-	-	-	-	0,03	1,95	0,10	0,03	-	-
Ionenstärke =	0,005																
Aktivitätskoeff. g	0,926	0,926	0,736	0,736	0,736	0,736	0,736	0,736	0,736	0,736	0,736	0,926	0,736	0.926	0,926	0,926	0,926
log Aktiv. [mol/l]	-4,316	-4,264	-4,405	-2,965	-	-	-	-	-	-	-	-4,504	-3,143	-4,040	-4,534	-	-
								TDS [mg/	I] =	214		SIon [mg/l]] =	166			
	Skat	3,16															
	San	2,12	lonenbila	anz [%] =		19,8		Vergleic	h TDS mit	t Analyse	[%] =			129			
Durchgang 5 (Schlad	:ke)																
	Na ⁺	K⁺	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	1,20	2,70	1,10	47,3	-	-	-	-	-	-	0,19	1,50	48,5	12,0	0,68	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,05	0,07	0,05	1,18	-	-	-	-	-	-	0,003	0,04	0,50	0,19	0,04	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m_{eq}/l	0,05	0,07	0,09	2,36	-	-	-	-	-	-	0,01	0,04	1,01	0,19	0,04	-	-
Ionenstärke =	0,004																
Aktivitätskoeff. g	0,937	0,937	0,770	0,770	0,770	0,770	0,770	0,770	0,770	0,770	0,770	0,937	0,770	0,937	0,937	0,937	0,937
log Aktiv. [mol/l]	-4,311	-4,189	-4,458	-3,042	-	-	-	-	-	-	-	-4,403	-3,411	-3,742	-4,475	-	-
		_						TDS [mg/	I] =	40		SIon [mg/l]] =	115			
	Skat San	2,58 1,28	lonenbila	anz [%] =		33,6		Vergleic	h TDS mit	t Analyse	[%] =			34,7			

Durchgang 6 (Schlad	:ke)																
	Na⁺	\mathbf{K}^{+}	Mg^{2+}	Ca ⁺⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO ₃ ⁻	F.	Br [·]	H ₂ AsO ₄
Konzentration [mg/l]	1,00	2,00	0,60	27,2	-	-	-	-	-	-	-	1,60	21,5	6,20	0,62	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,04	0,05	0,02	0,68	-	-	-	-	-	-	-	0,05	0,22	0,10	0,03	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,04	0,05	0,05	1,36	-	-	-	-	-	-	-	0,05	0,45	0,10	0,03	-	-
Ionenstärke =	0,002																
Aktivitätskoeff. g	0,952	0,952	0,821	0,821	0,821	0,821	0,821	0,821	0,821	0,821	0,821	0,952	0,821	0,952	0,952	0,952	0,952
log Aktiv. [mol/l]	-4,383	-4,313	-4,693	-3,254	-	-	-	-	-	-	-	-4,368	-3,736	-4,021	-4,508	-	-
								TDS [mg/	I] =	24		SIon [mg/l] =	61			
	Skat	1,50		F O (7				., .,									
	San	0,63	Ionenbila	anz [%] =		41,2		Vergleic	h IDS mi	t Analyse	[%]=			39,5			
Durchgang 7 (Schlad	ke)	* **	1 5 4+		G 1/+	G (+	G /+	3 5 /+	N 78 / +	DI /+	F (+				Π.	ъ.	
	Na	K	Mg	Ca	Cd	Co	Cu	Mn	NI ⁻¹	Pb ⁻	Zn	CI	SO ₄	NO ₃	F	Br	H ₂ AsO ₄
Konzentration [mg/l]	0,9	2,1	0,5	21,3	-	-	-	-	-	-	-	1,6	16,6	4,6	0,55	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,04	0,05	0,02	0,53	-	-	-	-	-	-	-	0,05	0,17	0,07	0,03	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,04	0,05	0,04	1,06	-	-	-	-	-	-	-	0,05	0,35	0,07	0,03	-	-
Ionenstärke =	0,002																
Aktivitätskoeff. g	0,957	0,957	0,838	0,838	0,838	0,838	0,838	0,838	0,838	0,838	0,838	0,957	0,838	0,957	0,957	0,957	0,957
log Aktiv. [mol/l]	-4,426	-4,289	-4,763	-3,351	-	-	-	-	-	-	-	-4,365	-3,839	-4,149	-4,558	-	-
								TDS [mg/	I] =	20		SIon [mg/l] =	48			
	Skat	1,20															
	San	0,49	lonenbila	anz [%] =		41,6		Vergleic	h TDS mi	t Analyse	[%] =			41,5			
Durchgang 1 (Theise	enschlamm,)	17 /+		C 1/+	G (+			N .78 //+	DI (+						ъ.	
	Na	K	Mg	Ca	Cd	Co	Cu	Mn	NI ⁻¹	Pb ⁻	Zn	CI	SO ₄	NO ₃	F	Br	H ₂ AsO ₄
Konzentration [mg/l]	170,9	575,1	385,2	375,9	9,30	3,80	0,34	49,5	6,5	4,40	5270	337,1	14126	23,0	20,5	3,6	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	7,43	14,71	15,85	9,37	0,08	0,06	0,01	0,90	0,11	0,02	80,58	9,50	147,01	0,37	1,08	0,05	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	7,43	14,71	31,70	18,75	0,17	0,13	0,01	1,80	0,22	0,04	161	9,50	294,02	0,37	1,08	0,05	-
Ionenstärke =	0,525																
Aktivitätskoeff. g	0,735	0,735	0,292	0,292	0,292	0,292	0,292	0,292	0,292	0,292	0,292	0,735	0,292	0,735	0,735	0,735	0,735
log Aktiv. [mol/l]	-2,262	-1,966	-2,334	-2,562	-4,617	-4,725	-5,806	-3,579	-4,490	-5,207	-1,628	-2,156	-1,367	-3,564	-3,101	-4,480	-
								TDS [mg/	I] =	8638		SIon [mg/l] =	21361			
	Skat San	236,13	Ionenhil	anz [%] -		-12 7		Veraleic	h TDS mi	t Analveo	<i>[%]</i> –			40 4			
	oun	000,01									L/ VJ —						

Durchgang 2 (Theise	enschlamm)															
	Na⁺	\mathbf{K}^{+}	Mg^{2+}	Ca ²⁺	Cd²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ⁴⁺	CI.	SO4 2-	NO ₃	F.	Br [·]	H ₂ AsO ₄
Konzentration [mg/l]	149,0	634,6	360,3	391,0	11,8	3,55	0,18	49,5	7,7	5,81	6370	282,6	15360	14,3	21,0	3,3	0,24
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	6,48	16,23	14,83	9,75	0,10	0,06	0,003	0,90	0,13	0,03	97,40	7,96	159,85	0,23	1,11	0,04	0,002
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	6,48	16,23	29,65	19,50	0,21	0,12	0,01	1,80	0,26	0,06	195	7,96	319,70	0,23	1,11	0,04	0,002
Ionenstärke =	0,582																
Aktivitätskoeff. g	0,739	0,739	0,299	0,299	0,299	0,299	0,299	0,299	0,299	0,299	0,299	0,739	0,299	0,739	0,739	0,739	0,739
log Aktiv. [mol/l]	-2,320	-1,921	-2,354	-2,536	-4,504	-4,745	-6,073	-3,570	-4,407	-5,077	-1,536	-2,230	-1,321	-3,768	-3,088	-4,515	-5,900
								TDS [mg/	I] =	8932		SIon [mg/l]=	23665			
	Skat	269,13															
	San	329,04	lonenbila	anz [%] =		-10,0		Vergleic	h TDS mit	t Analyse	[%] =			37,7			
Durchgang 3 (Theise	enschlamm)															
	Na⁺	K⁺	Mg ²⁺	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	Cl.	SO ₄ ²⁻	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	117,5	605,2	283,3	391,4	10,6	3,41	0,12	42,7	7,3	4,92	5910	265,6	12323	9,0	21,0	2,9	0,16
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	5,11	15,48	11,66	9,76	0,09	0,06	0,002	0,78	0,12	0,02	90,37	7,48	128,24	0,15	1,11	0,04	0,001
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	5,11	15,48	23,32	19,52	0,19	0,12	0,004	1,56	0,25	0,05	181	7,48	256,49	0,15	1,11	0,04	0,001
Ionenstärke =	0,497																
Aktivitätskoeff. g	0,734	0,734	0,290	0,290	0,290	0,290	0,290	0,290	0,290	0,290	0,290	0,734	0,290	0,734	0,734	0,734	0,734
log Aktiv. [mol/l]	-2,426	-1,945	-2,471	-2,548	-4,563	-4,775	-6,262	-3,647	-4,443	-5,162	-1,582	-2,260	-1,430	-3,973	-3,091	-4,575	-6,079
								TDS [mg/	I] =	7651		SIon [mg/l]=	19998			
	Skat	246,32		F O (T					. === .								
	San	265,26	Ionenbila	anz [%] =		-3,7		vergieic	n IDS mi	t Analyse	[%]=			38,3			
Durchgang 4 (Theise	enschlamm,)			<i>a</i>		<i>a</i> (+	/-				<i>с</i> т.					
	Na	K	Mg	Ca	Ca	C0-	Cu	NIn ⁻	NI ⁻¹	PD ⁻	Zn	CI	SO ₄ -	NO ₃	r	Br	H ₂ AsO ₄
Konzentration [mg/l]	66,3	351,3	145,6	181,6	4,96	1,66	-	21,6	3,1	1,11	2980	110,8	7580	3,0	11,9	1,6	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	2,88	8,98	5,99	4,53	0,04	0,03	-	0,39	0,05	0,01	45,57	3,12	78,88	0,05	0,63	0,02	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
III _{eq} /1	2,88	8,98	11,98	9,06	0,09	0,06	-	0,79	0,11	0,01	91,13	3,12	157,76	0,05	0,63	0,02	-
Ionenstärke =	0,279																
Aktivitätskoeff. g	0,736	0,736	0,293	0,293	0,293	0,293	0,293	0,293	0,293	0,293	0,293	0,736	0,293	0,736	0,736	0,736	0,736
log Aktiv. [mol/l]	-2,673	-2,180	-2,755	-2,877	-4,888	-5,083	-	-3,938	-4,810	-5,804	-1,874	-2,639	-1,636	-4,449	-3,336	-4,832	-
								TDS [mg/	I] =	4270		SIon [mg/l]=	11464			
	Skat	125,09	la namb !!	50/1		40 7		Verelste		4 Amalus -	F 0/ 1			27.0			
	San	161,58	ionenbila	anz [%] =		-12,7		vergieic	ກ ເບຣ mi	t Analyse	[%]=			31,2			

Durchgang 5 (Theise	nschlamm)																
	Na⁺	\mathbf{K}^{+}	Mg^{2+}	Ca ^{∠+}	Cd⁴⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ⁴⁺	Zn ²⁺	CI.	SO4 2-	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	77,0	456,3	193,3	184,8	5,91	1,87	-	25,5	3,6	2,57	3120	133,7	11783	5,6	14,6	1,8	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	3,35	11,67	7,95	4,61	0,05	0,03	-	0,46	0,06	0,01	47,71	3,77	122,63	0,09	0,77	0,02	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	3,35	11,67	15,91	9,22	0,11	0,06	-	0,93	0,12	0,02	95,41	3,77	245,25	0,09	0,77	0,02	-
Ionenstärke =	0,377																
Aktivitätskoeff. g	0,731	0,731	0,286	0,286	0,286	0,286	0,286	0,286	0,286	0,286	0,286	0,731	0,286	0,731	0,731	0,731	0,731
log Aktiv. [mol/l]	-2,611	-2,069	-2,643	-2,880	-4,823	-5,042	-	-3,877	-4,756	-5,450	-1,865	-2,560	-1,455	-4,180	-3,250	-4,776	-
								TDS [mg/	I] =	1390		SIon [mg/l]] =	16010			
	Skat	136,80															
	San	249,90	lonenbila	anz [%] =		-29,2		Vergleic	h TDS mi	t Analyse	[%] =			8,68			
Durchgang 6 (Theise	nschlamm)	T 7+	3 5 /+	G /+	G 1/+	G /+		. . /+	N 78 / +	DI /+	7 /+					р.	
	Na	K	Mg	Ca	Cd	Co-	Cu	Mn ²	NI ⁻¹	Pb ⁻	Zn	CI	SO ₄	NO ₃	F	Br	H ₂ AsO ₄
Konzentration [mg/l]	44,9	344,8	96,4	456,4	3,78	0,96	-	12,8	2,0	2,46	2022	65,1	7196	5,8	19,0	1,1	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	1,95	8,82	3,97	11,38	0,03	0,02	-	0,23	0,03	0,01	30,92	1,83	74,89	0,09	1,00	0,01	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	1,95	8,82	7,93	22,76	0,07	0,03	-	0,47	0,07	0,02	61,83	1,83	149,78	0,09	1,00	0,01	-
Ionenstärke =	0,250																
Aktivitätskoeff. g	0,739	0,739	0,298	0,298	0,298	0,298	0,298	0,298	0,298	0,298	0,298	0,739	0,298	0,739	0,739	0,739	0,739
log Aktiv. [mol/l]	-2,841	-2,186	-2,927	-2,469	-4,999	-5,313	-	-4,158	-4,993	-5,451	-2,035	-2,868	-1,651	-4,160	-3,131	-4,993	-
	_							TDS [mg/	I] =	912		SIon [mg/l]] =	10274			
	Skat	103,96	1	50/3		40.0		Ma	· TDO	(A	F 0 / T			0.00			
	San	152,72	Ionenbila	anz [%] =		-19,0		vergieic	n IDS mi	t Analyse	[%]=			8,88			
Durchgang 7 (Theise	nschlamm)	17+	Nf 4+	0.47	0.14+	C 4 ⁺	C 4 [±]	N 4+	N1 ⁴ 4+	DI 4+	7 4+	C1 -	60 K		п-	р.	
	INa	ĸ	Mg	Ca	Ca	Co	Cu	NIN	INI	PD	Zn	u	SO ₄ -	NO ₃	r	Br	H ₂ AsO ₄
Konzentration [mg/l]	38,7	373,1	85,1	461,7	3,55	0,86	-	10,5	1,7	3,11	1641	51,3	6588	4,6	21,0	1,1	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	1,68	9,54	3,50	11,51	0,03	0,01	-	0,19	0,03	0,02	25,09	1,45	68,56	0,07	1,11	0,01	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /1	1,68	9,54	7,00	23,03	0,06	0,03	-	0,38	0,06	0,03	50,18	1,45	137,13	0,07	1,11	0,01	-
Ionenstärke =	0,225																
Aktivitätskoeff. g	0,743	0,743	0,304	0,304	0,304	0,304	0,304	0,304	0,304	0,304	0,304	0,743	0,304	0,743	0,743	0,743	0,743
log Aktiv. [mol/l]	-2,903	-2,150	-2,973	-2,456	-5,018	-5,353	-	-4,235	-5,055	-5,341	-2,118	-2,969	-1,681	-4,259	-3,086	-4,990	-
								TDS [mg/	I] =	849		SIon [mg/l]] =	9286			
	Skat San	92,00 139,76	Ionenbila	anz [%] =		-20.6		Veraleic	h TDS mi	t Analyse	[%] =			9,14			

Durchgang 2 (Schwe	elgut)																
	Na⁺	K	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO ₄ ²⁻	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	12,0	68,9	21,4	481,8	0,89	0,28	98,0	2,42	0,38	2,26	522	32,9	4180	10,3	-	0,15	0,44
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,52	1,76	0,88	12,01	0,01	0,005	1,54	0,04	0,01	0,01	7,98	0,93	43,51	0,17	-	0,002	0,003
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,52	1,76	1,76	24,03	0,02	0,01	3,08	0,09	0,01	0,02	15,96	0,93	87,01	0,17	-	0,002	0,003
Ionenstärke =	0,134																
Aktivitätskoeff. g	0,766	0,766	0,344	0,344	0,344	0,344	0,344	0,344	0,344	0,344	0,344	0,766	0,344	0,766	0,766	0,766	0,766
log Aktiv. [mol/l]	-3,398	-2,870	-3,518	-2,383	-5,564	-5,786	-3,275	-4,819	-5,652	-5,425	-2,561	-3,149	-1,824	-3,895	-	-5,842	-5,621
								TDS [mg/	I] =	-		SIon [mg/l]] =	-			
	Skat	47,27															
	San	88,11	lonenbila	anz [%] =		-30,2		Vergleic	h TDS mit	t Analyse	[%] =			-			
Durchgang 3 (Schwe	elgut)																
	Na ⁺	\mathbf{K}^{+}	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO ₄ ²⁻	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	11,6	56,7	22,9	464,4	0,97	0,31	125,4	2,79	0,47	2,41	601	15,2	4150	10,5	20,0	0,14	0,45
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,50	1,45	0,94	11,58	0,01	0,01	1,97	0,05	0,01	0,01	9,19	0,43	43,18	0,17	1,05	0,002	0,003
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,50	1,45	1,88	23,16	0,02	0,01	3,94	0,10	0,02	0,02	18,38	0,43	86,37	0,17	1,05	0,002	0,003
Ionenstärke =	0,136																
Aktivitätskoeff. g	0,765	0,765	0,343	0,343	0,343	0,343	0,343	0,343	0,343	0,343	0,343	0,765	0,343	0,765	0,765	0,765	0,765
log Aktiv. [mol/l]	-3,413	-2,955	-3,491	-2,401	-5,529	-5,744	-3,170	-4,759	-5,561	-5,399	-2,501	-3,485	-1,829	-3,887	-3,094	-5,873	-5,612
								TDS [mg/	I] =	3192		SIon [mg/l]] =	5485			
	Skat	49,49															
	San	88,02	lonenbila	anz [%] =		-28,0		Vergleic	h TDS mit	t Analyse	[%] =			58,2			
Durchgang 4 (Schwe	elgut)																
	Na⁺	K⁺	Mg^{2+}	Ca²⁺	Cd ²⁺	Co ²⁺	Cu²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn²⁺	CI.	SO4 2-	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	3,9	21,0	11,2	223,2	0,33	0,11	44,0	1,49	0,17	0,89	194	5,2	1892	4,7	11,0	0,06	0,17
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,17	0,54	0,46	5,57	0,003	0,002	0,69	0,03	0,003	0,00	2,97	0,15	19,69	0,08	0,58	0,001	0,001
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,17	0,54	0,92	11,13	0,006	0,004	1,38	0,05	0,01	0,01	5,94	0,15	39,38	0,08	0,58	0,001	0,001
Ionenstärke =	0,060																
Aktivitätskoeff. g	0,812	0,812	0,434	0,434	0,434	0,434	0,434	0,434	0,434	0,434	0,434	0,812	0,434	0,812	0,812	0,812	0,812
log Aktiv. [mol/l]	-3,861	-3,361	-3,699	-2,617	-5,895	-6,091	-3,523	-4,929	-5,901	-5,730	-2,890	-3,925	-2,068	-4,211	-3,328	-6,215	-6,009
								TDS [mg/	I] =	1362		SIon [mg/l]] =	2414			
	Skat San	20,16 40,18	lonenbila	anz [%] =		-33,2		Vergleic	h TDS mit	t Analyse	[%] =			56,4			

Durchgang 5 (Schwe	elgut)																
	Na ⁺	\mathbf{K}^{+}	Mg^{2+}	Ca²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO4 2-	NO_3	F.	Br [·]	H ₂ AsO ₄
Konzentration [mg/l]	7,2	34,6	20,8	410,3	0,50	0,21	48,0	2,93	0,24	2,09	283	10,4	4170	11,0	16,5	0,34	0,25
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,9	58,7	207,2	65,4	35,5	96,09	62,01	19,0	79,9	140,93
Molarität [mmol/l]	0,31	0,88	0,86	10,23	0,004	0,004	0,75	0,05	0,004	0,01	4,33	0,29	43,40	0,18	0,87	0,004	0,002
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,31	0,88	1,71	20,46	0,01	0,01	1,51	0,11	0,01	0,02	8,65	0,29	86,79	0,18	0,87	0,004	0,002
Ionenstärke =	0,121																
Aktivitätskoeff. g	0,772	0,772	0,354	0,354	0,354	0,354	0,354	0,354	0,354	0,354	0,354	0,772	0,354	0,772	0,772	0,772	0,772
log Aktiv. [mol/l]	-3,617	-3,166	-3,518	-2,441	-5,802	-5,899	-3,573	-4,723	-5,839	-5,447	-2,814	-3,646	-1,813	-3,864	-3,174	-5,484	-5,864
								TDS [mg/	I] =	414		SIon [mg/l]] =	5018			
	Skat	33,69															
	San	88,14	lonenbila	anz [%] =		-44,7		Vergleic	h TDS mi	t Analyse	[%] =			8,25			
Durchgang 6 (Schwe	elgut)																
	Na⁺	K ⁺	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	Cl.	SO ₄ ²⁻	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	4,1	24,4	9,7	526,2	0,25	0,12	22,2	1,42	0,11	2,31	113	6,4	3643	7,9	8,3	0,34	0,24
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,18	0,62	0,40	13,12	0,002	0,002	0,35	0,03	0,002	0,01	1,72	0,18	37,91	0,13	0,44	0,004	0,002
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,18	0,62	0,80	26,24	0,004	0,004	0,70	0,05	0,004	0,02	3,44	0,18	75,82	0,13	0,44	0,004	0,002
Ionenstärke =	0,108																
Aktivitätskoeff. g	0,778	0,778	0,366	0,366	0,366	0,366	0,366	0,366	0,366	0,366	0,366	0,778	0,366	0,778	0,778	0,778	0,778
log Aktiv. [mol/l]	-3,858	-3,314	-3,836	-2,319	-6,090	-6,128	-3,894	-5,024	-6,164	-5,390	-3,201	-3,853	-1,858	-4,004	-3,469	-5,480	-5,878
								TDS [mg/	I] =	482		SIon [mg/l]] =	4369			
	Skat	32,07															
	San	76,57	lonenbila	anz [%] =		-41,0		Vergleic	h TDS mi	t Analyse	[%] =			11,0			
Durchgang 1 (Graue	Berge)																
	Na⁺	K⁺	Mg²⁺	Ca²⁺	Cď ²⁺	Co2+	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb⁴⁺	Zn ²⁺	CL.	SO ₄ ²⁻	NO_3	F'	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	15,3	23,4	29,6	103,9	-	-	-	0,53	-	-	-	54,3	208	114,4	0,5	0,1	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,67	0,60	1,22	2,59	-	-	-	0,01	-	-	-	1,53	2,17	1,84	0,03	0,001	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /1	0,67	0,60	2,44	5,18	-	-	-	0,02	-	-	-	1,53	4,33	1,84	0,03	0,001	-
Ionenstärke =	0,014																
Aktivitätskoeff. g	0,887	0,887	0,619	0,619	0,619	0,619	0,619	0,619	0,619	0,619	0,619	0,887	0,619	0,887	0,887	0,887	0,887
log Aktiv. [mol/l]	-3,229	-3,275	-3,123	-2,795	-	-	-	-5,224	-	-	-	-2,868	-2,873	-2,786	-4,632	-5,955	-
								TDS [mg/	I] =	1183		SIon [mg/l]] =	550			
	Skat	8,90 7 7 4	lononhil	onz 10/1		70		Voraloio	h TDS mi	+ Analysa	F 0/1_			215			
	Jan	1,14		an∡ [⁄0] =		7,0		vergielc		a maiyse	[/0] =			213			

Durchgang 2 (Graue	Berge)																
	Na⁺	K	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb⁺⁺	Zn ²⁺	CI.	SO4 2-	NO_3	F.	Br [·]	H ₂ AsO ₄
Konzentration [mg/l]	3,3	8,9	16,5	55,4	-	-	-	-	-	-	-	9,1	109	41,8	0,7	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,14	0,23	0,68	1,38	-	-	-	-	-	-	-	0,26	1,13	0,67	0,04	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,14	0,23	1,36	2,76	-	-	-	-	-	-	-	0,26	2,27	0,67	0,04	-	-
Ionenstärke =	0,007																
Aktivitätskoeff. g	0,916	0,916	0,703	0,703	0,703	0,703	0,703	0,703	0,703	0,703	0,703	0,916	0,703	0,916	0,916	0,916	0,916
log Aktiv. [mol/l]	-3,881	-3,681	-3,321	-3,013	-	-	-	-	-	-	-	-3,630	-3,099	-3,210	-4,472	-	-
								TDS [mg/	I] =	1001		SIon [mg/l]] =	245			
	Skat	4,49															
	San	3,23	lonenbila	anz [%] =		16,3		Vergleic	h TDS mi	t Analyse	[%] =			409			
Durchgang 3 (Graue	Berge)																
	Na ⁺	K ⁺	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO ₄ ²⁻	NO_3	F.	Br [·]	H ₂ AsO ₄
Konzentration [mg/l]	2,9	5,0	17,6	56,5	-	-	-	-	-	-	-	4,4	101	37,3	0,7	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,13	0,13	0,72	1,41	-	-	-	-	-	-	-	0,12	1,05	0,60	0,04	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,13	0,13	1,45	2,82	-	-	-	-	-	-	-	0,12	2,11	0,60	0,04	-	-
Ionenstärke =	0,007																
Aktivitätskoeff. g	0,916	0,916	0,705	0,705	0,705	0,705	0,705	0,705	0,705	0,705	0,705	0,916	0,705	0,916	0,916	0,916	0,916
log Aktiv. [mol/l]	-3,937	-3,931	-3,292	-3,003	-	-	-	-	-	-	-	-3,945	-3,129	-3,259	-4,472	-	-
								TDS [mg/	I] =	490		SIon [mg/l]] =	226			
	Skat	4,52															
	San	2,87	lonenbila	anz [%] =		22,4		Vergleic	h TDS mi	t Analyse	[%] =			217			
Durchgang 4 (Graue	Berge)																
	Na⁺	K ⁺	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	Cl.	SO ₄ ²⁻	NO_3	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	2,3	2,3	25,7	76,6	-	-	-	-	-	-	-	2,7	180	27,8	0,5	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,10	0,06	1,06	1,91	-	-	-	-	-	-	-	0,08	1,88	0,45	0,03	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,10	0,06	2,12	3,82	-	-	-	-	-	-	-	0,08	3,75	0,45	0,03	-	-
Ionenstärke =	0,010																
Aktivitätskoeff. g	0,902	0,902	0,662	0,662	0,662	0,662	0,662	0,662	0,662	0,662	0,662	0,902	0,662	0,902	0,902	0,902	0,902
log Aktiv. [mol/l]	-4,045	-4,275	-3,155	-2,898	-	-	-	-	-	-	-	-4,164	-2,906	-3,393	-4,625	-	-
								TDS [mg/	I] =	396		SIon [mg/l]] =	318			
	Skat	6,09	lononhil	onz [0/1_		17 0		Voraloio	h TDS mi	t Analysa	1 %1 —			104			
	San	4,30	IUNEIIDIla	au i∠ [/0] ≓		∡, / ۱		vergielC	ແ ເບວ ແມ	a maiyse	[∕0] =			124			

Durchgang 5 (Graue	Berge)																
	Na⁺	K	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	CI.	SO ₄ ²⁻	NO_3	F.	Br [·]	H ₂ AsO ₄
Konzentration [mg/l]	1,5	2,2	16,4	53,6	-	-	-	-	-	-	-	1,7	79,4	20,6	0,68	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,07	0,06	0,67	1,34	-	-	-	-	-	-	-	0,05	0,83	0,33	0,04	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,07	0,06	1,35	2,67	-	-	-	-	-	-	-	0,05	1,65	0,33	0,04	-	-
Ionenstärke =	0,006																
Aktivitätskoeff. g	0,922	0,922	0,721	0,721	0,721	0,721	0,721	0,721	0,721	0,721	0,721	0,922	0,721	0,922	0,922	0,922	0,922
log Aktiv. [mol/l]	-4,221	-4,285	-3,313	-3,016	-	-	-	-	-	-	-	-4,355	-3,225	-3,514	-4,482	-	-
								TDS [mg/	I] =	59,9		SIon [mg/l]] =	176			
	Skat	4,14															
	San	2,07	lonenbila	anz [%] =		33,4		Vergleic	h TDS mit	t Analyse	[%] =			34,0			
Durchgang 6 (Graue	Berge)																
	Na ⁺	K ⁺	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁺	Cl.	SO4 2-	NO ₃	F.	Br ⁻	H ₂ AsO ₄
Konzentration [mg/l]	1,3	2,0	13,4	42,9	-	-	-	-	-	-	-	2,1	59,2	16,1	0,68	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,06	0,05	0,55	1,07	-	-	-	-	-	-	-	0,06	0,62	0,26	0,04	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,06	0,05	1,10	2,14	-	-	-	-	-	-	-	0,06	1,23	0,26	0,04	-	-
Ionenstärke =	0,005																
Aktivitätskoeff. g	0,929	0,929	0,745	0,745	0,745	0,745	0,745	0,745	0,745	0,745	0,745	0,929	0,745	0,929	0,929	0,929	0,929
log Aktiv. [mol/l]	-4,280	-4,323	-3,386	-3,098	-	-	-	-	-	-	-	-4,260	-3,338	-3,618	-4,478	-	-
								TDS [mg/	I] =	49,8		SIon [mg/l]] =	138			
	Skat	3,35															
	San	1,59	lonenbila	anz [%] =		35,7		Vergleic	h TDS mit	t Analyse	[%] =			36,2			
Durchgang 7 (Graue	Berge)																
	Na⁺	K⁺	Mg^{2+}	Ca ²⁺	Cd ²⁺	Co2+	Cu ^{⊥+}	Mn ²⁺	Ni ²⁺	Pb ²⁺	Zn²⁺	CI.	SO4 2-	NO_3	F.	Br [·]	H ₂ AsO ₄
Konzentration [mg/l]	1,0	1,9	8,8	28,6	-	-	-	-	-	-	-	1,8	31,2	7,8	0,68	-	-
Molgewicht [g]	22,99	39,10	24,30	40,10	112,40	58,90	63,60	54,90	58,70	207,20	65,40	35,50	96,09	62,01	19,00	79,90	140,93
Molarität [mmol/l]	0,04	0,05	0,36	0,71	-	-	-	-	-	-	-	0,05	0,32	0,13	0,04	-	-
* Wertigkeit	1	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1
m _{eq} /l	0,04	0,05	0,72	1,43	-	-	-	-	-	-	-	0,05	0,65	0,13	0,04	-	-
Ionenstärke =	0,003																
Aktivitätskoeff. g	0,942	0,942	0,789	0,789	0,789	0,789	0,789	0,789	0,789	0,789	0,789	0,942	0,789	0,942	0,942	0,942	0,942
log Aktiv. [mol/l]	-4,387	-4,339	-3,544	-3,250	-	-	-	-	-	-	-	-4,321	-3,592	-3,926	-4,472	-	-
								TDS [mg/	I] =	34,5		SIon [mg/l]] =	82			
	Skat	2,24	lonont!	on= 1 0/1		44 E		Verels:-		4 Analyse	F 0/ 1			40.0			
	San	0,86	Ionenpila	ariz [%] =		44,5		vergieiC	ບຈຫຫ	t Analyse	[%]=			42,2			

Anhang 9: Korrelationsmatrix für das Kupferschiefereluat und hierarchische Clusteranalyse

Korrelationsmatrix

	C a ²⁺	CI .	F ·	\mathbf{K}^{+}	LF	${\rm Mg}^{2+}$	Mn^{2+}	Na^+	Nds	NO ₃ .	pН	SO42-	Temp	\mathbf{Zn}^{2+}
$C a^{2+}$	-	-0,1202	0,0149	0,2027	#####	#####	#####	#####	0,0518	#####	0,3305	0,5226	0,2308	-0,3341
CI .	-0,1202	-	0,7298	0,3303	0,6498	0,9076	0,9530	0,9838	0,4626	0,9989	#####	0,7149	0,6353	-0,6815
F.	0,0149	0,7298	-	0,8625	0,9267	0,9220	0,6893	0,8231	0,2029	0,7473	#####	0,7871	0,7932	-0,4276
\mathbf{K}^{+}	0,2027	0,3303	0,8625	-	0,8318	0,6510	0,2467	0,4761	0,3084	0,3474	#####	0,6767	0,7835	-0,3054
LF	-0,0949	0,6498	0,9267	0,8318	-	0,8917	0,5718	0,7483	0,5579	0,6606	#####	0,6892	0,8553	-0,3582
Mg ²⁺	-0,1705	0,9076	0,9220	0,6510	0,8917	-	0,8643	0,9630	0,3807	0,9171	#####	0,7483	0,7945	-0,5537
Mn ²⁺	-0,3259	0,9530	0,6893	0,2467	0,5718	0,8643	-	0,9350	#####	0,9627	#####	0,5321	0,4348	-0,4800
Na^+	-0,1224	0,9838	0,8231	0,4761	0,7483	0,9630	0,9350	-	0,3130	0,9872	#####	0,7590	0,7211	-0,6679
Nds	0,0518	0,4626	0,2029	0,3084	0,5579	0,3807	#####	0,3130	-	0,2275	#####	0,2760	0,7068	-0,4202
NO ₃ ⁻	-0,1385	0,9989	0,7473	0,3474	0,6606	0,9171	0,9627	0,9872	0,2275	-	#####	0,7091	0,6277	-0,6577
pН	0,3305	-0,4623	#####	#####	#####	#####	#####	#####	#####	#####	-	#####	#####	0,1524
SO ₄ ²⁻	0,5226	0,7149	0,7871	0,6767	0,6892	0,7483	0,5321	0,7590	0,2760	0,7091	#####	-	0,8512	-0,7407
Temp	0,2308	0,6353	0,7932	0,7835	0,8553	0,7945	0,4348	0,7211	0,7068	0,6277	#####	0,8512	-	-0,7163
Zn ²⁺	-0,3341	-0,6815	#####	#####	#####	#####	#####	#####	#####	#####	0,1524	#####	#####	-

1. Iterationsschritt

	Cl /NO ₃	F'/LF	\mathbf{K}^{+}	Mg^{2+}	Mn ²⁺	\mathbf{Na}^{+}	Nds	pH/Ca ²⁺	SO ₄ ²⁻	Temp	\mathbf{Zn}^{2+}
Cl 7/NO3	-	0,6969	0,3389	0,9124	0,9579	0,9855	0,3451	-0,3018	0,7120	0,6315	-0,6696
F /LF	0,6969	-	0,8472	0,9069	0,6306	0,7857	0,3804	-0,4194	0,7382	0,8243	-0,3929
\mathbf{K}^{+}	0,3389	0,8472	-	0,6510	0,2467	0,4761	0,3084	-0,2757	0,6767	0,7835	-0,3054
Mg^{2+}	0,9124	0,9069	0,6510	-	0,8643	0,9630	0,3807	-0,4662	0,7483	0,7945	-0,5537
Mn ²⁺	0,9579	0,6306	0,2467	0,8643	-	0,9350	-0,5538	-0,4005	0,5321	0,4348	-0,4800
Na^+	0,9855	0,7857	0,4761	0,9630	0,9350	-	0,3130	-0,3632	0,7590	0,7211	-0,6679
Nds	0,3451	0,3804	0,3084	0,3807	-0,5538	0,3130	-	-0,0731	0,2760	0,7068	-0,4202
pH/Ca ²⁺	-0,3018	-0,4194	-0,2757	-0,4662	-0,4005	-0,3632	-0,0731	-	0,0447	-0,2166	-0,0909
SO4 ²⁻	0,7120	0,7382	0,6767	0,7483	0,5321	0,7590	0,2760	0,0447	-	0,8512	-0,7407
Temp	0,6315	0,8243	0,7835	0,7945	0,4348	0,7211	0,7068	-0,2166	0,8512	-	-0,7163
\mathbf{Zn}^{2+}	-0,6696	-0,3929	-0,3054	-0,5537	-0,4800	-0,6679	-0,4202	-0,0909	-0,7407	-0,7163	-

Cophenetische Korrelation

	C a ²⁺	CI.	F.	\mathbf{K}^{+}	LF	Mg^{2+}	Mn^{2+}	\mathbf{Na}^+	Nds	NO ₃ .	pН	SO ₄ ² ·	Temp	\mathbf{Zn}^{2+}
$C a^{2+}$	-	-0,3266	#####	#####	#####	#####	#####	#####	#####	#####	0,3305	#####	#####	-0,0909
CI.	-0,3266	-	0,7935	0,6118	0,7935	0,7935	0,9464	0,9855	0,2670	0,9989	#####	0,6118	0,6118	-0,3266
F.	-0,3266	0,7935	-	0,6118	0,9267	0,9069	0,7935	0,7935	0,2670	0,7935	#####	0,6118	0,6118	-0,3266
\mathbf{K}^{+}	-0,3266	0,6118	0,6118	-	0,6118	0,6118	0,6118	0,6118	0,2670	0,6118	#####	0,7301	0,7301	-0,3266
LF	-0,3266	0,7935	0,9267	0,6118	-	0,9069	0,7935	0,7935	0,2670	0,7935	#####	0,6118	0,6118	-0,3266
Mg ²⁺	-0,3266	0,7935	0,9069	0,6118	0,9069	-	0,7935	0,7935	0,2670	0,7935	#####	0,6118	0,6118	-0,3266
Mn ²⁺	-0,3266	0,9464	0,7935	0,6118	0,7935	0,7935	-	0,9464	0,2670	0,9464	#####	0,6118	0,6118	-0,3266
Na^+	-0,3266	0,9855	0,7935	0,6118	0,7935	0,7935	0,9464	-	0,2670	0,9855	#####	0,6118	0,6118	-0,3266
Nds	-0,3266	0,2670	0,2670	0,2670	0,2670	0,2670	0,2670	0,2670	-	0,2670	#####	0,2670	0,2670	-0,3266
NO ₃ ⁻	-0,3266	0,9989	0,7935	0,6118	0,7935	0,7935	0,9464	0,9855	0,2670	-	#####	0,6118	0,6118	-0,3266
pН	0,3305	-0,3266	#####	#####	#####	#####	#####	#####	#####	#####	-	#####	#####	-0,0909
SO ₄ ² ·	-0,3266	0,6118	0,6118	0,7301	0,6118	0,6118	0,6118	0,6118	0,2670	0,6118	#####	-	0,8512	-0,3266
Temp	-0,3266	0,6118	0,6118	0,7301	0,6118	0,6118	0,6118	0,6118	0,2670	0,6118	#####	0,8512	-	-0,3266
Zn ²⁺	-0,0909	-0,3266	#####	#####	#####	#####	#####	#####	#####	#####	#####	#####	#####	-

Cl 7/N	O₃ ⁻ /Na ⁺	F /LF	\mathbf{K}^{+}	Mg^{2+}	Mn ²⁺	Nds	pH/Ca ²⁺	504 ² /Tem	\mathbf{Zn}^{2+}
Cl '/NO ₃ '/Na ⁺	-	0,7413	0,4075	0,9377	0,9464	0,3290	-0,3325	0,7059	-0,6688
F /LF	0,7413	-	0,8472	0,9069	0,6306	0,3804	-0,4194	0,7812	-0,3929
\mathbf{K}^{+}	0,4075	0,8472	-	0,6510	0,2467	0,3084	-0,2757	0,7301	-0,3054
Mg^{2+}	0,9377	0,9069	0,6510	-	0,8643	0,3807	-0,4662	0,7714	-0,5537
Mn ²⁺	0,9464	0,6306	0,2467	0,8643	-	-0,5538	-0,4005	0,4835	-0,4800
Nds	0,3290	0,3804	0,3084	0,3807	-0,5538	-	-0,0731	0,4914	-0,4202
pH/Ca ²⁺	-0,3325	-0,4194	-0,2757	-0,4662	-0,4005	-0,0731	-	-0,0859	-0,0909
SO ₄ ² /Temp	0,7059	0,7812	0,7301	0,7714	0,4835	0,4914	-0,0859	-	-0,7285
Zn ²⁺	-0,6688	-0,3929	-0,3054	-0,5537	-0,4800	-0,4202	-0,0909	-0,7285	-

Anhang 9: Korrelationsmatrix für das Kupferschiefereluat und hierarchische Clusteranalyse

-0,7285

-

Zn²⁺ -0,5744 -0,4733 -0,3054 -0,4202 -0,0909

3. Iterationsschritt

Cl /NO ₃ /N	a+/Mn ²⁺	F //LF	\mathbf{K}^{+}	Mg^{2+}	Nds	pH/Ca ²⁺	SO ₄ ² /Temp	\mathbf{Zn}^{2+}	5. Iterations	sschritt					
Cl '/NO3'/Na ⁺ /Mn ²⁺	-	0,6859	0,3271	0,9010	-0,1124	-0,3665	0,5947	-0,5744							
F /LF	0,6859	-	0,8472	0,9069	0,3804	-0,4194	0,7812	-0,3929	Cl ⁻ /NO ₃ ⁻ /Na ⁺ /Mn ²⁺ /F	/LF/Mg ²⁺	\mathbf{K}^{+}	Nds	pH/Ca ²⁺	SO4 ² /Temp	Zn ²⁺
\mathbf{K}^{*}	0,3271	0,8472	-	0,6510	0,3084	-0,2757	0,7301	-0,3054	Cl '/NO3'/Na ⁺ /Mn ²⁺ /F '/LF/Mg ²⁺	-	0,5381	0,1341	-0,4047	0,6855	-0,5239
Mg^{2+}	0,9010	0,9069	0,6510	-	0,3807	-0,4662	0,7714	-0,5537	\mathbf{K}^{+}	0,5381	-	0,3084	-0,2757	0,7301	-0,3054
Nds	-0,1124	0,3804	0,3084	0,3807	-	-0,0731	0,4914	-0,4202	Nds	0,1341	0,3084	-	-0,0731	0,4914	-0,4202
pH/Ca ²⁺	-0,3665	-0,4194	-0,2757	-0,4662	-0,0731	-	-0,0859	-0,0909	pH/Ca ²⁺	-0,4047	-0,2757	-0,0731	-	-0,0859	-0,0909
SO ₄ ² /Temp	0,5947	0,7812	0,7301	0,7714	0,4914	-0,0859	-	-0,7285	SO ₄ ² /Temp	0,6855	0,7301	0,4914	-0,0859	-	-0,7285
Zn ²⁺	-0,5744	-0,3929	-0,3054	-0,5537	-0,4202	-0,0909	-0,7285	-	Zn ²⁺	-0,5239	-0,3054	-0,4202	-0,0909	-0,7285	-
4. Iterationssch	ritt								6. Iterations	sschritt					
CI	'/NO ₃ '/N	a ⁺ /Mn ²⁺	/LF/Mg ²	\mathbf{K}^{+}	Nds	pH/Ca ²⁺	SO ₄ ² /Temp	\mathbf{Zn}^{2+}							
Cl '/NO ₃ '/N	a ⁺ /Mn ²⁺	-	0,7935	0,3271	-0,1124	-0,3665	0,5947	-0,5744	Cl '/NO ₃ '/Na ⁺ /Mn ²⁺ /F	/LF/Mg ²⁺	Nds	pH/Ca ²⁺	SO ₄ ² /Temp/K	Zn ²⁺	
F 7	LF/Mg ²⁺	0,7935	-	0,7491	0,3806	-0,4428	0,7763	-0,4733	Cl '/NO3'/Na ⁺ /Mn ²⁺ /F '/LF/Mg ²⁺	-	0,1341	-0,4047	0,6118	-0,5239	
	\mathbf{K}^{+}	0,3271	0,7491	-	0,3084	-0,2757	0,7301	-0,3054	Nds	0,1341	-	-0,0731	0,3999	-0,4202	
	Nds	-0,1124	0,3806	0,3084	-	-0,0731	0,4914	-0,4202	pH/Ca ²⁺	-0,4047	-0,0731	-	-0,1808	-0,0909	
I	pH/Ca ²⁺	-0,3665	-0,4428	-0,2757	-0,0731	-	-0,0859	-0,0909	SO ₄ ²⁻ /Temp/K ⁺	0,6118	0,3999	-0,1808	-	-0,0517	
SO	4 ² 7/Temp	0,5947	0,7763	0,7301	0,4914	-0,0859	-	-0,7285	Zn ²⁺	-0,5239	-0,4202	-0,0909	-0,5170	-	

7. Iterationsschritt

Cl '/NO ₃ '/Na ⁺ /Mn ²⁺ /F '/LF/Mg ²⁺ /S	O4 ² /Temp/K ⁺	Nds	pH/Ca ²⁺	\mathbf{Zn}^{2+}
Cl '/NO ₃ '/Na ⁺ /Mn ²⁺ /F '/LF/Mg ²⁺ /SO ₄ ²⁻ /Temp/K ⁺	-	0,2670	-0,2927	-0,5204
Nds	0,2670	-	-0,0731	-0,4202
pH/Ca ²⁺	-0,2927	-0,0731	-	-0,0909
Zn ²⁺	-0,5204	-0,4202	-0,0909	-

8. Iterationsschritt

Cl '/NO ₃ '/Na ⁺ /Mn ²⁺ /F '/LF/Mg ²⁺ /SO ₄	² /Temp/K ⁺ /Nds	pH/Ca ²⁺	Zn ²⁺
Cl '/NO ₃ '/Na ⁺ /Mn ²⁺ /F '/LF/Mg ²⁺ /SO ₄ ²⁻ /Temp/K ⁺ /Nds	-	-0,1829	-0,4703
pH/Ca ²⁺	-0,1829	-	-0,0909
Zn ²⁺	-0,4703	-0,0909	-

Anhang 10: Korrelationsmatrix für das Schlackeneluat und hierarchische Clusteranalyse

Korrelationsmatrix

	Ca ²⁺	CI.	F	\mathbf{K}^{+}	LF	Mg^{2+}	Na^+	Nds	NO ₃ .	pН	SO4 ² .	Temp
Ca ²⁺	-	0,3474	0,3251	0,3796	0,6034	0,5543	0,3794	0,1252	0,4268	-0,2525	0,9492	0,1510
CI.	0,3474	-	0,8279	0,9896	0,8359	0,9222	0,9931	0,2412	0,7435	-0,0038	0,4990	0,5823
F.	0,3251	0,8279	-	0,8933	0,8736	0,9248	0,8826	-0,1537	0,9222	-0,5265	0,4590	0,7080
\mathbf{K}^{+}	0,3796	0,9896	0,8933	-	0,8911	0,9629	0,9994	0,1968	0,8020	-0,1357	0,5358	0,6583
LF	0,6034	0,8359	0,8736	0,8911	-	0,9684	0,8853	0,4957	0,7360	-0,3894	0,7809	0,8050
Mg^{2+}	0,5543	0,9222	0,9248	0,9629	0,9684	-	0,9575	0,2421	0,8447	-0,3218	0,7002	0,7144
Na^+	0,3794	0,9931	0,8826	0,9994	0,8853	0,9575	-	0,1997	0,7902	-0,1136	0,5375	0,6443
Nds	0,1252	0,2412	-0,1537	0,1968	0,4957	0,2421	0,1997	-	-0,5013	0,0426	0,3890	0,7068
NO ₃ ⁻	0,4268	0,7435	0,9222	0,8020	0,7360	0,8447	0,7902	-0,5013	-	-0,5394	0,4453	0,4243
pН	-0,2525	-0,0038	-0,5265	-0,1357	-0,3894	-0,3218	-0,1136	0,0426	-0,5394	-	-0,2576	-0,3885
SO4 ²⁻	0,9492	0,4990	0,4590	0,5385	0,7809	0,7002	0,5375	0,3890	0,4453	-0,2576	-	0,4306
Temp	0,1510	0,5823	0,7080	0,6583	0,8050	0,7144	0,6443	0,7068	0,4243	-0,3885	0,4306	-

Cophenetische Korrelation

	Ca ²⁺	CI .	F -	\mathbf{K}^{+}	LF	Mg^{2+}	Na^+	Nds	NO ₃	pН	SO4 ²⁻	Temp
Ca ²⁺	-	0,4821	0,4821	0,4821	0,4821	0,4821	0,4821	0,2896	0,4821	-0,2431	0,9492	0,2896
CI.	0,4821	-	0,8293	0,9914	0,9016	0,9016	0,9914	0,2896	0,8293	-0,2431	0,4821	0,2896
F.	0,4821	0,8293	-	0,8293	0,8293	0,8293	0,8293	0,2896	0,9222	-0,2431	0,4821	0,2896
\mathbf{K}^{+}	0,4821	0,9914	0,8293	-	0,9016	0,9016	0,9994	0,2896	0,8293	-0,2431	0,4821	0,2896
LF	0,4821	0,9016	0,8293	0,9016	-	0,9684	0,9016	0,2896	0,8293	-0,2431	0,4821	0,2896
Mg ²⁺	0,4821	0,9016	0,8293	0,9016	0,9684	-	0,9016	0,2896	0,8293	-0,2431	0,4821	0,2896
Na^+	0,4821	0,9914	0,8293	0,9994	0,9016	0,9016	-	0,2896	0,8293	-0,2431	0,4821	0,2896
Nds	0,2896	0,2896	0,2896	0,2896	0,2896	0,2896	0,2896	-	0,2896	-0,2431	0,2896	0,7068
NO ₃	0,4821	0,8293	0,9222	0,8293	0,8293	0,8293	0,8293	0,2896	-	-0,2431	0,4821	0,2896
pН	-0,2431	-0,2431	-0,2431	-0,2431	-0,2431	-0,2431	-0,2431	-0,2431	-0,2431	-	-0,2431	-0,2431
SO4 ²⁻	0,9492	0,4821	0,4821	0,4821	0,4821	0,4821	0,4821	0,2896	0,4821	-0,2431	-	0,2896
Temp	0,2896	0,2896	0,2896	0,2896	0,2896	0,2896	0,2896	0,7068	0,2896	-0,2431	0,2896	-

1. Iterationsschritt

	Ca ²⁺ /SO ₄ ²⁻	CI -	F	K ⁺ /Na ⁺	LF/Mg ²⁺	Nds	NO ₃ .	рН	Temp
Ca ²⁺ /SC	04 ²⁻	0,4232	0,3921	0,4581	0,6597	0,2571	0,4361	######	0,2908
CI.	0,4232	-	0,8279	0,9914	0,8791	0,2412	0,7435	######	0,5823
F -	0,3921	0,8279	-	0,8880	0,8992	-0,1537	0,9222	######	0,7080
K ⁺ /Na	+ 0,4581	0,9914	0,8880	-	0,9242	0,1983	0,7961	######	0,6513
LF/Mg	²⁺ 0,6597	0,8791	0,8992	0,9242	-	0,3689	0,7904	######	0,7597
Nds	0,2571	0,2412	-0,1537	0,1983	0,3689	-	-0,5013	0,0426	0,7068
NO ₃	0,4361	0,7435	0,9222	0,7961	0,7904	-0,5013	-	######	0,4243
pH	-0,2551	-0,0038	-0,5265	-0,1247	-0,3556	0,0426	-0,5394	-	######
Temp	0,2908	0,5823	0,7080	0,6513	0,7597	0,7068	0,4243	######	-

	Ca ²⁺ /SO ₄ ² ·	K ⁺ /Na ⁺ /Cl ⁻	LF/Mg ²⁺	Nds	F'/NO ₃	pН	Temp
Ca ²⁺ /SO ₄ ²		0,4406	0,6597	0,2571	0,4141	-0,2551	0,2908
K ⁺ /Na ⁺ /Cl	. 0,4406	-	0,9016	0,2197	0,8139	-0,0642	0,6168
LF/Mg ²	+ 0,6597	0,9016	-	0,3689	0,8448	-0,3556	0,7597
Nd	s 0,2571	0,2197	0,3689	-	-0,3275	0,0426	0,7068
F/NO ₃	. 0,4141	0,8139	0,8448	-0,3275	-	-0,5330	0,5662
pł	H -0,2551	-0,0642	-0,3556	0,0426	-0,5330	-	######
Tem	p 0,2908	0,6168	0,7597	0,7068	0,5662	-0,3885	-

Anhang 10: Korrelationsmatrix für das Schlackeneluat und hierarchische Clusteranalyse

3. Iterationsschritt

	Ca ²⁺ /SO ₄ ²⁻	K ⁺ /Na ⁺ /Cl -/LF/M	Nds	F'/NO ₃	pН	Temp
Ca ²⁺ /SO ₄ ²⁻	-	0,5502	0,2571	0,4141	-0,2551	0,2908
K ⁺ /Na ⁺ /Cl ⁻ /LF/Mg ²⁺	0,5502	-	0,2943	0,8293	-0,2099	0,6883
Nds	0,2571	0,2943	-	-0,3275	0,0426	0,7068
F'/NO ₃ -	0,4141	0,8293	-0,3275	-	-0,5330	0,5662
pН	-0,2551	-0,2099	0,0426	-0,5330	-	-0,3885
Temp	0,2908	0,6883	0,7068	0,5662	-0,3885	-

4. Iterationsschritt

	Ca ²⁺ /SO ₄ ²⁻	K ⁺ /Na ⁺ /Cl ⁻ /LF/Mg ²⁺ /F ⁻ /N	O ₃ Nds/Temp	pH
Ca ²⁺ /SO ₄ ²⁻	-	0,4821	0,2740	-0,2551
K ⁺ /Na ⁺ /Cl ⁻ /LF/Mg ²⁺ /F ⁻ /NO ₃ ⁻	0,4821	-	0,3053	-0,3714
Nds/Temp	0,2740	0,3053	-	-0,1730
рН	-0,2551	-0,3714	-0,1730	-

5. Iterationsschritt

K ⁺ /Na ⁺ /Cl ⁻ /LF/M	g ²⁺ /F ⁻ /NO ₃ ⁻ /Ca ²⁺ /	SO4 ²⁻ Nds/Temp	pH
$K^{+}/Na^{+}/Cl^{-}/LF/Mg^{2+}/F^{-}/NO_{3}^{-}/Ca^{2+}/SO_{4}^{2-}$	-	0,2896	-0,3132
Nds/Temp	0,2896	-	-0,1730
pH	-0,3132	-0,1730	-

	K ⁺ /Na ⁺ /Cl ⁻ /LF/Mg ²⁺ /F ⁻ /	NO ₃ ⁻ /Ca ²⁺ /SO ₄ ²⁻ /Nds/Temp	рН
$K^{+}/Na^{+}/Cl^{-}/LF/Mg^{2+}/F^{-}/NO_{3}^{-}/Ca^{2+}/SO_{4}^{-2}$	/Nds/Temp	-	-0,2431
	рН	-0,2431	-

Anhang 11: Korrelationsmatrix für das Theisenschlammeluat und hierarchische Clusteranalyse

Korrelationsmatrix

	Br	C a ²⁺	C d ²⁺	CI.	C 0 ²⁺	F.	\mathbf{K}^{+}	LF	Mg ²⁺	Mn ²⁺	Na^+	Nds	Ni ²⁺	NO_3	Pb ²⁺	pН	SO 42-	Temp	Zn ²⁺
Br	-	#####	0,9365	#####	0,9939	0,3934	0,9382	0,9509	0,9949	0,9935	0,9934	0,1970	0,9545	0,8696	0,7831	-0,9937	0,9363	0,7790	0,9470
$C a^{2+}$	0,0188	-	0,0756	#####	#####	0,8945	0,1314	0,0429	0,0036	-0,0159	0,0104	0,2808	0,0427	0,2431	0,5011	-0,0464	-0,0441	0,4785	0,0256
$C d^{2+}$	0,9365	#####	-	#####	0,9569	0,4412	0,9767	0,9307	0,9303	0,9633	0,9012	0,2180	0,9956	0,6878	0,8678	-0,9321	0,9253	0,7273	0,9951
CI .	0,9965	#####	0,9249	-	0,9936	0,3949	0,9287	0,9478	0,9861	0,9872	0,9887	0,2038	0,9490	0,8717	0,7659	-0,9878	0,9172	0,7749	0,9399
C 0 ²⁺	0,9939	#####	0,9569	#####	-	0,3725	0,9483	0,9622	0,9827	0,9958	0,9771	0,2243	0,9759	0,8177	0,7802	-0,9851	0,9266	0,7619	0,9701
F.	0,3934	#####	0,4412	#####	0,3725	-	0,5301	0,3525	0,3766	0,3594	0,3686	0,2973	0,4125	0,5116	0,8057	-0,3924	0,3552	0,6694	0,3847
\mathbf{K}^{+}	0,9382	#####	0,9767	#####	0,9483	0,5301	-	0,8769	0,9320	0,9501	0,9026	0,1688	0,9728	0,7334	0,9098	-0,9165	0,9445	0,7117	0,9603
LF	0,9509	#####	0,9307	#####	0,9622	0,3525	0,8769	-	0,9320	0,9571	0,9340	0,4235	0,9481	0,7656	0,7352	-0,9647	0,8278	0,8483	0,9532
${\rm Mg}^{2+}$	0,9949	#####	0,9303	#####	0,9827	0,3766	0,9320	0,9320	-	0,9910	0,9956	0,1040	0,9433	0,8790	0,7816	-0,9924	0,9583	0,7503	0,9375
Mn ²⁺	0,9935	#####	0,9633	#####	0,9958	0,3594	0,9501	0,9571	0,9910	-	0,9815	0,1648	0,9764	0,8201	0,7879	-0,9897	0,9498	0,7468	0,9733
Na^+	0,9934	#####	0,9012	#####	0,9771	0,3686	0,9026	0,9340	0,9956	0,9815	-	0,1330	0,9208	0,9078	0,7478	-0,9935	0,9309	0,7712	0,9145
Nds	0,1970	#####	0,2180	#####	0,2243	0,2973	0,1688	0,4235	0,1040	0,1648	0,1330	-	0,2318	0,0315	0,2256	-0,2061	-0,1068	0,7068	0,2317
Ni^{2+}	0,9545	#####	0,9956	#####	0,9759	0,4125	0,9728	0,9481	0,9433	0,9764	0,9208	0,2318	-	0,7107	0,8383	-0,9475	0,9210	0,7338	0,9983
NO ₃ ⁻	0,8696	#####	0,6878	#####	0,8177	0,5116	0,7334	0,7656	0,8790	0,8201	0,9078	0,0315	0,7107	-	0,6789	-0,8787	0,7822	0,7803	0,6945
\mathbf{Pb}^{2+}	0,7831	#####	0,8678	#####	0,7802	0,8057	0,9098	0,7352	0,7816	0,7879	0,7478	0,2256	0,8383	0,6789	-	-0,7767	0,8057	0,7639	0,8230
pН	#####	#####	#####	#####	#####	-0,3924	-0,9165	-0,9647	-0,9924	-0,9897	-0,9935	-0,2061	-0,9475	-0,8787	-0,7767	-	-0,9230	-0,8064	-0,9451
SO42-	0,9363	#####	0,9253	#####	0,9266	0,3552	0,9445	0,8278	0,9583	0,9498	0,9309	-0,1068	0,9210	0,7822	0,8057	-0,9230	-	0,5898	0,9140
Тетр	0,7790	#####	0,7273	#####	0,7619	0,6694	0,7117	0,8483	0,7503	0,7468	0,7712	0,7068	0,7338	0,7803	0,7639	-0,8064	0,5898	-	0,7290
Zn ²⁺	0,9470	#####	0,9951	#####	0,9701	0,3847	0,9603	0,9532	0,9375	0,9733	0,9145	0,2317	0,9983	0,6945	0,8230	-0,9451	0,9140	0,7290	-

Cophenetische Korrelation

 $\mathbf{Br}^{\cdot} \quad \mathbf{Ca}^{2+} \quad \mathbf{Cd}^{2+} \quad \mathbf{Cl}^{\cdot} \quad \mathbf{Co}^{2+} \quad \mathbf{F}^{\cdot}$ \mathbf{K}^{+} $LF \quad Mg^{2+} \quad Mn^{2+} \quad Na^+$ Nds Ni²⁺ NO₃ · Pb²⁺ pH SO42. Temp Zn2+ Br - ##### 0,9032 ##### 0,9921 0,4589 0,9032 0,9438 0,9869 0,9921 0,9869 0,2860 0,9032 0,8021 0,6936 -0,3821 0,9032 0,6936 0,9032 $C a^{2+}$ 0,4589 - 0,4589 ##### 0,4589 0,8945 0,4589 0, $\mathbf{C}\mathbf{d}^{2+}$ 0,9032 ##### - ##### 0,9032 0,4589 0,9716 0,9032 0,9032 0,9032 0,9032 0,2860 0,9954 0,8021 0,6936 -0,3821 0,9330 0,6936 0,9954 CI. 0,9965 ##### 0,9032 - 0,9921 0,4589 0,9032 0,9438 0,9869 0,9921 0,9869 0,2860 0,9032 0,8021 0,6936 -0,3821 0,9032 0,6936 0,9032 C 0²⁺ 0.9921 ##### 0.9032 ##### - 0.4589 0.9032 0.9438 0.9869 0.9958 0.9869 0.2860 0.9032 0.8021 0.6936 -0.3821 0.9032 0.6936 0.9032 F. 0.4589 ##### 0.4589 ##### 0.4589 - 0.4589 0.4 \mathbf{K}^{+} 0,9032 ##### 0,9716 ##### 0,9032 0,4589 - 0,9032 0,9032 0,9032 0,9032 0,2860 0,9716 0,8021 0,6936 -0,3821 0,9330 0,6936 0,9716 $\mathbf{LF} = 0.9438 \ \#\#\#\# \ 0.9032 \ \#\#\#\# \ 0.9438 \ 0.94589 \ 0.9032 \ - 0.9438 \ 0.9448 \ 0.9$ Mg^{2+} 0.9869 ##### 0.9032 ##### 0.9869 0.4589 0.9032 0.9438 - 0.9869 0.9956 0.2860 0.9032 0.8021 0.6936 -0.3821 0.9032 0.6936 0.9032 Mn²⁺ 0.9921 ##### 0.9032 ##### 0.9958 0.4589 0.9032 0.9438 0.9869 - 0.9869 0.2860 0.9032 0.8021 0.6936 -0.3821 0.9032 0.6936 0.9032 Na^+ 0.9869 ##### 0.9032 ##### 0.9869 0.4589 0.9032 0.9438 0.9956 0.9869 - 0.2860 0.9032 0.8021 0.6936 -0.3821 0.9032 0.6936 0.9032 Nds 0,2860 ##### 0,2860 ##### 0,2860 0,2860 0,2860 0,2860 0,2860 0,2860 0,2860 - 0,2860 0,286 Ni²⁺ 0,9032 ##### 0,9954 ##### 0,9032 0,4589 0,9716 0,9032 0,9032 0,9032 0,9032 0,2860 -0,8021 0,6936 -0,3821 0,9330 0,6936 0,9983 $NO_3 \overset{\cdot}{} 0,8021 \ \#\#\#\#\# \ 0,8021 \ \#\#\#\#\# \ 0,8021 \ 0,4589 \ 0,8021 \ 0,802$ 0.6936 -0.3821 0.8021 0.6936 0.8021 Pb²⁺ 0,6936 ##### 0,6936 ##### 0,6936 0,4589 0,6936 0,6936 0,6936 0,6936 0,6936 0,6936 0,6936 0,6936 - -0.3821 0.6936 0.7639 0.6936 pН ##### ##### ##### ##### ##### -0,3821 -SO4² 0.9032 ##### 0.9330 ##### 0.9032 0.4589 0.9330 0.9032 0.9032 0.9032 0.9032 0.2860 0.9330 0.8021 0.6936 -0.3821 - 0.6936 0.9330 Temp 0,6936 ##### 0,6936 ##### 0,6936 0,4589 0,6936 0.6936 \mathbf{Zn}^{2+} 0,9032 ##### 0,9954 ##### 0,9032 0,4589 0,9716 0,9032 0,9032 0,9032 0,9032 0,2860 0,9983 0,8021 0,6936 -0,3821 0,9330 0,6936

	Br'/Cl	Ca ²⁺ /F	Cd ²⁺	o ²⁺ /Mn	\mathbf{K}^{+}	LF	/Ig ²⁺ /Na	Nds	Vi ²⁺ /Zn ²	NO_3	Pb ²⁺	pН	SO 42.	Temp
Br/Cl	۲ ₋	0,2082	0,9307	0,9921	0,9335	0,9494	0,9908	0,2004	0,9476	0,8707	0,7745	-0,9908	0,9268	0,7770
C a ²⁺ /F	#####	-	0,2584	0,1780	0,3308	0,1977	0,3796	0,2891	0,2164	0,3774	0,6534	-0,2194	0,1556	0,5740
$\mathbf{C}\mathbf{d}^{2+}$	#####	0,2584	-	0,9601	0,9767	0,9307	0,9158	0,2180	0,9954	0,6878	0,8678	-0,9321	0,9253	0,7273
C o ²⁺ /Mı	n #####	0,1780	0,9601	-	0,9492	0,9597	0,9831	0,1946	0,9739	0,8189	0,7841	-0,9874	0,9382	0,7544
\mathbf{K}^{+}	#####	0,3308	0,9767	0,9492	-	0,8769	0,9173	0,1688	0,9666	0,7334	0,9098	-0,9165	0,9445	0,7117
LF	#####	0,1977	0,9307	0,9597	0,8769	-	0,9330	0,4235	0,9507	0,7656	0,7352	-0,9647	0,8278	0,8483
Mg ²⁺ /N	a #####	0,3796	0,9158	0,9831	0,9173	0,9330	-	0,1185	0,9290	0,8934	0,7647	-0,9930	0,9446	0,7608
Nds	#####	0,2891	0,2180	0,1946	0,1688	0,4235	0,1185	-	0,2318	0,0315	0,2256	-0,2061	-0,1068	0,7068
Ni ²⁺ /Zn	2 #####	0,2164	0,9954	0,9739	0,9666	0,9507	0,9290	0,2318	-	0,7026	0,8307	-0,9463	0,9175	0,7314
NO ₃	. #####	0,3774	0,6878	0,8189	0,7334	0,7656	0,8934	0,0315	0,7026	-	0,6789	-0,8787	0,7822	0,7803
\mathbf{Pb}^{2+}	#####	0,6534	0,8678	0,7841	0,9098	0,7352	0,7647	0,2256	0,8307	0,6789	-	-0,7767	0,8057	0,7639
pН	#####	#####	-0,9321	-0,9874	-0,9165	-0,9647	-0,9930	-0,2061	-0,9463	-0,8787	-0,7767	-	-0,9230	-0,8064
SO_4^2	. #####	0,1556	0,9253	0,9382	0,9445	0,8278	0,9446	-0,1068	0,9175	0,7822	0,8057	-0,9230	-	0,5898
Temp) #####	0,5740	0,7273	0,7544	0,7117	0,8483	0,7608	0,7068	0,7314	0,7803	0,7639	-0,8064	0,5898	-

2. Iterationsschritt

В	r'/Cl ^{-/} C o ²⁺ /I	Ca^{2+}/F	\mathbf{K}^{+}	LF	Mg^{2+}/Na^{+}	Nds	l ²⁺ /Ni ²⁺ /Zı	NO ₃ .	Pb^{2+}	pН	SO ₄ ²⁻	Temp
Br ^{-/} Cl ^{-/} Co ²⁴	/N _	0,1931	0,9413	0,9545	0,9869	0,1975	0,9531	0,8448	0,7793	0,9325	0,9325	0,7657
C a ²⁺ /F	0,1931	-	0,3308	0,1977	0,3796	0,2891	0,2374	0,3774	0,6534	-0,2194	0,1556	0,5740
\mathbf{K}^{+}	0,9413	0,3308	-	0,8769	0,9173	0,1688	0,9716	0,7334	0,9098	-0,9165	0,9445	0,7117
LF	0,9545	0,1977	0,8769	-	0,9330	0,4235	0,9407	0,7656	0,7352	-0,9647	0,8278	0,8483
Mg ²⁺ /N	a^+ 0,9869	0,3796	0,9173	0,9330	-	0,1185	0,9224	0,8934	0,7647	-0,9930	0,9446	0,7608
Nds	0,1975	0,2891	0,1688	0,4235	0,1185	-	0,2249	0,0315	0,2256	-0,2061	-0,1068	0,7068
Cd ²⁺ /Ni ²⁺ /	Zi 0,9531	0,2374	0,9716	0,9407	0,9224	0,2249	-	0,8492	-0,9392	-0,9392	0,9214	0,7294
NO ₃	0,8448	0,3774	0,7334	0,7656	0,8934	0,0315	0,8492	-	0,6789	-0,8787	0,7822	0,7803
Pb ²⁺	0,7793	0,6534	0,9098	0,7352	0,7647	0,2256	-0,9392	0,6789	-	-0,7767	0,8057	0,7639
pH	-0,9891	-0,2194	-0,9165	-0,9647	-0,9930	-0,2061	-0,9392	-0,8787	-0,7767	-	-0,9230	-0,8064
SO ₄ ²	0,9325	0,1556	0,9445	0,8278	0,9446	-0,1068	0,9214	0,7822	0,8057	-0,9230	-	0,5898
Temp	0,7657	0,5740	0,7117	0,8483	0,7608	0,7068	0,7294	0,7803	0,7639	-0,8064	0,5898	-

3. Iterationsschritt

Br ⁻ /Cl ^{-/} Co ²⁺ /Mn ²⁺ /M	$C a^{2+}/F$	LF	Nds	Cd ²⁺ /Ni ²⁻	NO ₃ ⁻	Pb ²⁺	pН	SO4 ²⁻	Temp	
Br ⁻ /Cl ^{-/} Co ²⁺ /Mn ²⁺ /Mg ²⁺ /Na ⁺	-	0,2863	0,9438	0,1580	0,9377	0,8691	-0,1122	-0,9910	0,9385	0,7632
C a ²⁺ /F	0,2863	-	0,1977	0,2891	0,2841	0,3774	0,6534	-0,2194	0,1556	0,5740
LF	0,9438	0,1977	-	0,4235	0,9088	0,7656	0,7352	-0,9647	0,8278	0,8483
Nds	0,1580	0,2891	0,4235	-	0,1968	0,0315	0,2256	-0,2061	-0,1068	0,7068
C d ²⁺ /Ni ²⁺ /Zn ²⁺ /K ⁺	0,9377	0,2841	0,9088	0,1968	-	0,7913	0,9098	-0,9279	0,9330	0,7205
NO ₃	0,8691	0,3774	0,7656	0,0315	0,7913	-	0,6789	-0,8787	0,7822	0,7803
Pb ²⁺	-0,1122	0,6534	0,7352	0,2256	0,9098	0,6789	-	-0,7767	0,8057	0,7639
pH	-0,9910	-0,2194	-0,9647	-0,2061	-0,9279	-0,8787	-0,7767	-	-0,9230	-0,8064
SO ₄ ²⁻	0,9385	0,1556	0,8278	-0,1068	0,9330	0,7822	0,8057	-0,9230	-	0,5898
Тетр	0,7632	0,5740	0,8483	0,7068	0,7205	0,7803	0,7639	-0,8064	0,5898	-

4. Iterationsschritt

Br ⁻ /Cl ^{-/} Co ²⁺ /Mn ²⁺ /Mg ²⁺	²⁺ /Na ⁺ /LF	$C a^{2+}/F$	Nds	$C d^{2+}/Ni^{2+}$	NO ₃ [·]	Pb ²⁺	pН	SO4 ²⁻	Temp
Br ⁻ /Cl ^{-/} Co ²⁺ /Mn ²⁺ /Mg ²⁺ /Na ⁺ /LF	-	0,2420	0,2907	0,9233	0,8173	0,3115	-0,9779	0,8832	0,8058
Ca ²⁺ /F ⁻	0,2420	-	0,2891	0,2841	0,3774	0,6534	-0,2194	0,1556	0,5740
Nds	0,2907	0,2891	-	0,1968	0,0315	0,2256	-0,2061	-0,1068	0,7068
C d ²⁺ /Ni ²⁺ /Zn ²⁺ /K ⁺	0,9233	0,2841	0,1968	-	0,7913	0,9098	-0,9279	0,9330	0,7205
NO ₃	0,8173	0,3774	0,0315	0,7913	-	0,6789	-0,8787	0,7822	0,7803
Pb^{2+}	0,3115	0,6534	0,2256	0,9098	0,6789	-	-0,7767	0,8057	0,7639
pH	-0,9779	-0,2194	-0,2061	-0,9279	-0,8787	-0,7767	-	-0,9230	-0,8064
SO ₄ ²	0,8832	0,1556	-0,1068	0,9330	0,7822	0,8057	-0,9230	-	0,5898
Temp	0,8058	0,5740	0,7068	0,7205	0,7803	0,7639	-0,8064	0,5898	-

5. Iterationsschritt

Br'/Cl ^{-/} Co ²⁺ /Mn ²⁺ /Mg ²⁻	*/Na*/LF	$C a^{2+}/F$	Nds	$C d^{2+}/Ni^{2+}$	NO ₃ ⁻	Pb ²⁺	pН	Temp
Br'/Cl ^{-/} C 0 ²⁺ /Mn ²⁺ /Mg ²⁺ /Na ⁺ /LF	-	0,2420	0,2907	0,9032	0,8173	0,3115	-0,9779	0,8058
$C a^{2+}/F$	0,2420	-	0,2891	0,2198	0,3774	0,6534	-0,2194	0,5740
Nds	0,2907	0,2891	-	0,0450	0,0315	0,2256	-0,2061	0,7068
Cd ²⁺ /Ni ²⁺ /Zn ²⁺ /K ⁺ /SO ₄ ²⁻	0,9032	0,2198	0,0450	-	0,7868	0,8578	-0,9254	0,6552
NO ₃	0,8173	0,3774	0,0315	0,7868	-	0,6789	-0,8787	0,7803
Pb ²⁺	0,3115	0,6534	0,2256	0,8578	0,6789	-	-0,7767	0,7639
pH	-0,9779	-0,2194	-0,2061	-0,9254	-0,8787	-0,7767	-	-0,8064
Temp	0,8058	0,5740	0,7068	0,6552	0,7803	0,7639	-0,8064	-

Br'/Cl'/Co ²⁺ /Mn ²⁺ /Mg ²⁺ /Na ⁺ /LF/Cd ²⁺ /Ni ²⁺ /	/Zn ²⁺ /K ⁻ /SO ₄ ²⁻	$C a^{2+}/F$	Nds	NO ₃ [·]	Pb ²⁺	pН	Temp
Br'/Cl ^{-/} Co ²⁺ /Mn ²⁺ /Mg ²⁺ /Na ⁺ /LF/Cd ²⁺ /Ni ²⁺ /Zn ²⁺ /K ⁻ /SO ₄	2	0,2309	0,1679	0,8021	0,5846	-0,9516	0,7305
Ca^{2+}/F	. 0,2309	-	0,2891	0,3774	0,6534	-0,2194	0,5740
Nds	0,1679	0,2891	-	0,0315	0,2256	-0,2061	0,7068
NO ₃ ·	0,8021	0,3774	0,0315	-	0,6789	-0,8787	0,7803
Pb ²⁺	0,5846	0,6534	0,2256	0,6789	-	-0,7767	0,7639
pH	-0,9516	-0,2194	-0,2061	-0,8787	-0,7767	-	-0,8064
Temp	0,7305	0,5740	0,7068	0,7803	0,7639	-0,8064	-

Anhang 11: Korrelationsmatrix für das Theisenschlammeluat und hierarchische Clusteranalyse

7. Iterationsschritt

Br'/Cl ^{-/} Co ²⁺ /Mn ²⁺ /Mg ²⁺ /Na ⁺ /LF/Cd ²⁺ /Ni ²⁺ /Zn ²⁺ /K ⁻ /SO	4 ² /NO ₃	C a ²⁺ /F ⁻	Nds	Pb ²⁺ /Tem]	pН
Br ⁻ /Cl ^{-/} Co ²⁺ /Mn ²⁺ /Mg ²⁺ /Na ⁺ /LF/Cd ²⁺ /Ni ²⁺ /Zn ²⁺ /K ⁻ /SO ₄ ²⁻ /NO ₃ ⁻	-	0,3041	0,0997	0,6936	-0,9152
Ca^{2+}/F	0,3041	-	0,2891	0,6137	-0,2194
Nds	0,0997	0,2891	-	0,4662	-0,2061
Pb ²⁺ /Temj	0,6936	0,6137	0,4662	-	-0,8787
pH	-0,9152	-0,2194	-0,2061	-0,8787	-

8. Iterationsschritt

$Br'/Cl^{-\!/}Co^{2+}/Mn^{2+}/Mg^{2+}/Na^{+}/LF/Cd^{2+}/Ni^{2+}/Zn^{2+}/K^{-}/SO_4^{-2}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-}/Pb^{-}/NO_3^{-$	Nds	pН		
Br'/Cl ^{-/} Co ²⁺ /Mn ²⁺ /Mg ²⁺ /Na ⁺ /LF/Cd ²⁺ /Ni ²⁺ /Zn ²⁺ /K ⁻ /SO ₄ ⁻²⁻ /NO ₃ ⁻ /Pb ²⁺ /Temp	-	0,4589	0,2829	-0,8969
Ca ²⁺ /F ⁻	0,4589	-	0,2891	-0,2194
Nds	0,2829	0,2891	-	-0,2061
рН	-0,8969	-0,2194	-0,2061	-

9. Iterationsschritt

Br'/Cl ^{-/} Co ²⁺ /Mn ²⁺ /Mg ²⁺ /Na ⁺ /LF/Cd ²⁺ /Ni ²⁺ /Zn ²⁺ /K ⁻ /SO ₄ ²⁻ /NO ₃ ⁻ /Pb ²⁺ /Tem	Nds	pН	
$Br'/Cl'/C o^{2+}/Mn^{2+}/Mg^{2+}/Na^{+}/LF/Cd^{2+}/Ni^{2+}/Zn^{2+}/K'/SO_4 ^2/NO_3 'Pb^{2+}/Temp/Ca^{2+}/F$	-	0,2860	-0,5582
Nds	0,2860	-	-0,2061
рН	-0,5582	-0,2061	-

10. Iterationsschritt

 $Br'/Cl'Co^{2+}/Mn^{2+}/Mg^{2+}/Na^{+}/LF/Cd^{2+}/Ni^{2+}/Zn^{2+}/K'/SO_4^{-2}/NO_3^{-}/Pb^{2+}/Temp/Ca^{2+}/F/Nds \qquad pH$

 $Br'/Cl'^{\prime}Co^{2+}/Mn^{2+}/Mg^{2+}/Na^{+}/LF/Cd^{2+}/Ni^{2+}/Zn^{2+}/K'/SO_{4}^{-2}/NO_{3}^{-}/Pb^{2+}/Temp/Ca^{2+}/F/Nds - -0.3821$

рН -0,3821 -

Anhang 12: Korrelationsmatrix für das Schwelguteluat und hierarchische Clusteranalyse

Korrelationsmatrix

I. Mo. 9 o. Mar. 9 Mar. 9 Mar. 9 Mar.		H ₂ AsO ₄	Br	Ca ²⁺	$\mathbf{C}\mathbf{d}^{\mathtt{a}\mathtt{t}}$	CI ·	Co ²⁺	Cu⁴⁺	F	\mathbf{K}^{*}	LF	Mg^{2+}	Mn ²⁺	Na⁺	Nds	Ni ²⁺	NO ₃ ⁻	Pb ⁴⁺	pH	SO ₄ ²⁻	Temp	Zn ⁴⁺
hr 0.239 0.6232 0.4239 0.238 0.238 0.239 0.238 0.239 0.238 0.238 <th< th=""><th>H₂AsO₄</th><th>-</th><th>-0,2397</th><th>0,4438</th><th>0,9293</th><th>0,8027</th><th>0,9259</th><th>0,8717</th><th>0,7662</th><th>0,9576</th><th>0,8145</th><th>0,7118</th><th>0,4786</th><th>0,9622</th><th>0,3983</th><th>0,8805</th><th>0,6813</th><th>0,6083</th><th>-0,6374</th><th>0,6353</th><th>0,8024</th><th>0,9074</th></th<>	H ₂ AsO ₄	-	-0,2397	0,4438	0,9293	0,8027	0,9259	0,8717	0,7662	0,9576	0,8145	0,7118	0,4786	0,9622	0,3983	0,8805	0,6813	0,6083	-0,6374	0,6353	0,8024	0,9074
CL ² 0.443 0.423 0.101 0.013 0.101 0.0133 0.101 0.0133 0.0134 0.0144 0.0444 0.0391 0.0391 0.0331	Br	-0,2397	-	0,6252	-0,4644	-0,2530	-0,2650	-0,5955	-0,2239	-0,2886	-0,6708	-0,2002	0,0288	-0,2771	-0,9185	-0,5044	0,4231	0,5927	0,8012	0,5776	-0,6524	-0,5016
CC ¹ 0.027 0.0270 0.0271 0.0280 0.0291 0.0246 0.02870 0.0546 0.2297 0.0280 0.0712 0.0280 0.0271 0.0280 0.0271 0.0280 0.0271 0.0380 0.0446 0.0287 0.0280 0.0271 0.0280 0.0271 0.0280 0.0271 0.0280 0.0271 0.0280 0.0271 0.0280 0.0271 0.0280 0.0271 0.0280 0.0271 0.0280 0.0211 0.0380 0.0381 0.0381 0.0397 0.5781 0.4453 0.4533 </th <th>C a²⁺</th> <th>0,4438</th> <th>0,6252</th> <th>-</th> <th>0,0929</th> <th>0,2950</th> <th>0,1971</th> <th>-0,0233</th> <th>-0,1106</th> <th>0,3216</th> <th>-0,1027</th> <th>-0,0474</th> <th>-0,0942</th> <th>0,2696</th> <th>-0,3793</th> <th>0,0023</th> <th>0,5573</th> <th>0,9370</th> <th>0,0382</th> <th>0,7652</th> <th>0,1620</th> <th>0,0398</th>	C a ²⁺	0,4438	0,6252	-	0,0929	0,2950	0,1971	-0,0233	-0,1106	0,3216	-0,1027	-0,0474	-0,0942	0,2696	-0,3793	0,0023	0,5573	0,9370	0,0382	0,7652	0,1620	0,0398
C1 0.887 0.289 0.283 0.289 0.281 0.080 0.183 0.0844 0.387 0.3854 -0.444 0.4494 0.448 <	Cd^{2+}	0,9293	-0,4644	0,0929	-	0,7562	0,9737	0,9747	0,9265	0,9316	0,8924	0,8594	0,6442	0,9719	0,5416	0,9870	0,5944	0,3259	-0,6582	0,4489	0,7692	0,9975
Ch ⁰ 0.229 0.260 0.771 0.9290 0.751 0.9290 0.7587 0.4634 0.4635 0.4635 0.4635 0.4635 0.4736 0.238 0.9391 0.7587 0.4635 0.4736 0.2380 0.9391 0.7587 0.4635 0.4736 0.2380 0.9316 0.7292 0.837 0.416 0.7591 0.9397 0.5381 0.9397 0.5381 0.9397 0.5381 0.4381 0.4781 0.2321 0.9391 0.7292 0.8381 0.9397 0.5331 0.8397 0.8387 0.8381 0.8397 0.8385 0.8482 0.4381 0.4781 0.2391 0.9397 0.8387 0.8385 0.8397 0.8385 0.8397 0.8385 0.8397 0.8385 0.8397 0.838 0.8387 0.8387 0.8387 0.8385 0.8387 0.8385 0.8397 0.8385 0.8387 0.8385 0.8397 0.838 0.8387 0.8387 0.8385 0.8387 0.838 0.8387 0.8387 0.8387 0.838	CI -	0,8027	-0,2530	0,2950	0,7562	-	0,7265	0,6283	0,9239	0,9272	0,7087	0,6060	0,3512	0,8400	0,1863	0,6444	0,5387	0,3654	-0,4943	0,4939	0,7445	0,7143
Che [*] 0.871 0.953 0.0233 0.971 0.9235 0.9234 0.9284 0.9897 0.9997 <th>C 0²⁺</th> <th>0,9259</th> <th>-0,2650</th> <th>0,1971</th> <th>0,9737</th> <th>0,7265</th> <th>-</th> <th>0,9180</th> <th>0,9618</th> <th>0,9204</th> <th>0,7618</th> <th>0,9200</th> <th>0,7610</th> <th>0,9810</th> <th>0,3587</th> <th>0,9597</th> <th>0,7558</th> <th>0,4635</th> <th>-0,4844</th> <th>0,6163</th> <th>0,6321</th> <th>0,9658</th>	C 0 ²⁺	0,9259	-0,2650	0,1971	0,9737	0,7265	-	0,9180	0,9618	0,9204	0,7618	0,9200	0,7610	0,9810	0,3587	0,9597	0,7558	0,4635	-0,4844	0,6163	0,6321	0,9658
μ ⁻ 0.762 0.239 0.116 0.236 0.8985 0.8987 0.944 0.9387 0.8915 0.8752 0.8782 0.8985 0.8782 0.8984 0.9161 0.722 0.8385 0.8782 0.8988 0.9155 0.8525 0.8584 0.8185 0.8782 0.8888 0.9155 0.8525 0.858 0.8585 0.8585 0.8585 0.8586 0.8596 0.5596 0.5586 0.5596 0.5586 0.5596 0.5586 0.5596 0.5586 0.5596 0.5586 0.5596 0.5586 0.5596 0.5596 0.5596 0.5596	Cu ²⁺	0,8717	-0,5955	-0,0233	0,9747	0,6283	0,9180	-	0,8573	0,8416	0,9569	0,7882	0,5681	0,8977	0,6992	0,9897	0,4419	0,2039	-0,7504	0,2858	0,7883	0,9861
K 0.957 0.328 0.321 0.231 0.972 0.323 0.972 0.323 0.9817 0.722 0.9838 0.9940 Me 0.718 0.538 0.538 0.318 0.738 0.318 0.738 0.8388 0.815 0.755 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.015 0.575 0.578 0.578 0.576 0.578 0.576 0.578 0.576 0.578 0.576 0.578 0.578 0.577 0.230 0.578 0.578 0.578 0.578 0.577 0.230 0.578 0.578 0.577 0.230 0.578 0.578 0.577 0.230 0.589 0.598 0.598 0.598 0.598 0.598 0.598 0.598 0.598 0.598 0.598	F	0,7662	-0,2239	-0,1106	0,9265	0,9239	0,9618	0,8573	-	0,8965	0,6708	0,9847	0,9164	0,9360	0,3015	0,9252	0,6897	0,2421	-0,2381	0,4693	0,3421	0,9222
LF 0.814 ⁵ 0.6078 0.102 0.828 0.921 0.9038 0.8135 0.8135 0.0815 0.0115	\mathbf{K}^{+}	0,9576	-0,2886	0,3216	0,9316	0,9272	0,9204	0,8416	0,8965	-	0,8026	0,7720	0,5304	0,9787	0,3347	0,8617	0,6722	0,4832	-0,5858	0,5941	0,7922	0,9040
Mm² 0./118 0.002 0.0174 0.8391 0.6481 0.8458 0.8458 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858 0.779 0.7821 0.8588 0.779 0.7821 0.8488 0.779 0.7838 0.4185 0.0182 0.0182 0.6496 0.779 0.7316 0.7974 0.7308 0.4388 0.7974 0.7308 0.4383 0.9279 0.5461 0.3284 0.7175 0.9380 0.5861 0.7374 0.7068 0.5384 0.7175 0.7383 0.7383 0.7383 0.7397 0.7383 0.7397 0.7383 0.4581 0.7080 0.4584 0.7080 0.4584 0.7080 0.4584 0.7080 0.4584 0.7080 0.4584 0.7080 0.4584 0.7080 0.4584 0.7080 0.4584 0.7080 0.4584 0.7080 0.7084 0.7080 0.7081 0.4284 0.4183		0,8145	-0,6708	-0,1027	0,8924	0,7087	0,7618	0,9569	0,6708	0,8026	-	0,5338	0,3188	0,7802	0,8598	0,9015	0,1533	0,0815	-0,8770	0,0270	0,9231	0,9038
Ma 0.428 0.028 0.042 0.428 0.2581 0.7584 0.748 0.7683 0.7683 0.7683 0.7683 0.7583 0.5583 0.0253 0.759 0.7583 0.5283 0.0253 0.759 0.7583 0.6283 0.6699 0.0279 0.7571 0.4890 0.5383 0.0979 0.7591 0.4380 0.0353 0.6699 0.0270 0.5791 0.4908 0.2583 0.6248 0.7593 0.518 0.5781 0.7583 0.7591 0.5533 0.5751 0.5411 0.5821 0.7583 0.5781 0.5781 0.5783 0.5781 0.5781 0.5783 0.5781 0.5783 0.5781 0.5783 0.5781 0.5783 0.5781 0.5783 0.5781 0.5783 0.5781 0.5783 0.5781 0.5783 0.5781 0.5783 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781 0.5781	Mg	0,7118	-0,2002	-0,0474	0,8594	0,6060	0,9200	0,7882	0,9847	0,7720	0,5338	-	0,9387	0,8638	0,1835	0,8652	0,7565	0,2716	-0,2090	0,5504	0,3527	0,8593
Msb 0.922 0.271 0.2890 0.913 0.0480 0.9137 0.0480 0.0433 0.0423 0.0213 0.0480 0.0433 0.0423 0.0228 0.0238 0.0380 0.0330 0.0330 0.0380 0.0380 0.0380 0.0380 0.0380 0.0380 0.0380 0.0380 0.0380 0.0390 0.0440 0.0390 0.02248 0.0380 0.0390 0.0480 0.0380 0.0390 0.0480 0.0380 0.0390 0.0480 0.0380 0.0390 0.0248 0.0390 0.0416 0.0390 0.0160 0.0160 0.0160 0.0160 0.0160 0.0160 0.0160 0.0106 0.0106 0.0106 0.0108	Mn ²	0,4786	0,0288	-0,0942	0,6442	0,3512	0,7610	0,5681	0,9164	0,5304	0,3188	0,9387	-	0,6609	-0,0563	0,6749	0,7683	0,2465	0,1105	0,5593	0,0132	0,6496
Na ¹⁰ 0.8918 -0.3918 -0.3918 -0.3914 -0.3210 -0.3810 -0.3974 -0.3290 -0.3333 -0.9989 -0.4280 0.0988 0.0819 -0.2974 -0.3290 -0.3130 0.3341 0.9979 0.0311 0.9970 0.2510 0.03490 -0.3200 0.4410 0.9380 0.0321 0.3210 0.3110 0.0380 0.0118 0.0438 0.476 0.4677 0.4571 0.4521 0.4672 0.4672 0.4672 0.4672 0.4672 0.4672 0.4662 <	INA	0,9622	-0,2771	0,2696	0,9719	0,8400	0,9810	0,8977	0,9360	0,9787	0,7802	0,8638	0,6609	-	0,3516	0,9297	0,7327	0,4890	-0,5435	0,6224	0,7239	0,9539
Mo 0.880 0.0404 0.0820 0.6444 0.9997 0.9975 0.0415 0.0925 0.6474 0.0925 0.6474 0.0927 0.5376 0.7580 0.7155 0.9996 0.511 0.2397 0.511 0.3324 0.9115 0.9995 Ph 0.637 0.577 0.576 0.752 0.538 0.757 0.5486 0.9380 0.1264 0.0380 0.1650 0.9482 0.6929 S0 0.6373 0.5716 0.7523 0.5944 0.0287 0.5783 0.4284 0.4038 0.1650 0.1660 0.1650 0.1650 0.4942 0.4038 Temp 0.9074 0.508 0.9744 0.584 0.9840 0.533 0.966 0.1258 0.166 0.4832 0.1650 0.4692 0.1018 0.4038 Temp 0.677 0.573 0.5840 0.9530 0.5866 0.9533 0.566 0.2567 0.6692 0.4033 0.916 0.3533 0.9777 0.577 0.578	Nds	0,3983	-0,9185	-0,3793	0,5416	0,1863	0,3587	0,6992	0,3015	0,3347	0,8598	0,1835	-0,0563	0,3516	-	0,5974	-0,3200	-0,3335	-0,9089	-0,4268	0,7068	0,5806
No.1 0.813 0.421 0.3513 0.421 0.3535 0.4235 0.122 0.1226 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1246 0.2905 0.1264 0.2905 0.1264 0.2905 0.1264 0.2905 0.1264 0.2905 0.1264 0.2905 0.1616 0.4018 0.4038 Corr 0.6521 0.4835 0.6321 0.7252 0.0122 0.0233 0.2267 0.1264 0.2905 0.1618 0.4038 0.4038 0.2260 0.1618 0.4038 0.2260 0.1618 0.4038 0.2260 0.1618 0.4038 0.2260 0.1626 0.4038 0.2260 0.1618 0.4038 0.2260 0.1626 0.4038 0.266 0.2807 0.666 0.2807 0.666 0.2807 0.666 <th< th=""><th>NI NO ⁻</th><th>0,8805</th><th>-0,5044</th><th>0,0023</th><th>0,9870</th><th>0,6444</th><th>0,9597</th><th>0,9897</th><th>0,9252</th><th>0,8617</th><th>0,9015</th><th>0,8652</th><th>0,6749</th><th>0,9297</th><th>0,5974</th><th>-</th><th>0,5496</th><th>0,2597</th><th>-0,6511</th><th>0,3824</th><th>0,7175</th><th>0,9953</th></th<>	NI NO ⁻	0,8805	-0,5044	0,0023	0,9870	0,6444	0,9597	0,9897	0,9252	0,8617	0,9015	0,8652	0,6749	0,9297	0,5974	-	0,5496	0,2597	-0,6511	0,3824	0,7175	0,9953
Ibit 0.0003 0.3297 0.0382 0.3297 0.0382 0.0329 0.0480 0.03297 0.7005 . 0.0383 0.0290 0.7016 0.02480 0.4893 0.0333 0.2397 0.7005 . 0.0380 0.0290 0.1018 0.0180 0.0210 0.0118	Pb ²⁺	0,6813	0,4231	0,5573	0,5944	0,5387	0,7558	0,4419	0,6897	0,6722	0,1533	0,7565	0,7683	0,7327	-0,3200	0,5496	-	0,7905	0,1264	0,9589	0,1258	0,5606
pit -0.5374 0.0312 0.0312 0.0323 -0.0394 -0.0391 -0.0	10	0,6083	0,5927	0,9370	0,3259	0,3654	0,4635	0,2039	0,2421	0,4832	0,0815	0,2716	0,2465	0,4890	-0,3335	0,2597	0,7905	-	0,0380	0,9200	0,1766	0,2807
bbr 0.07.0 0.07.0 0.07.00 0.00	рн SQ. ²⁻	-0,0374	0,8012	0,0582	-0,6582	-0,4945	-0,4844	-0,7504	-0,2381	-0,5858	-0,8770	-0,2090	0,1105	-0,5455	-0,9089	-0,0511	0,1264	0,0380	- 0.1650	0,1650	-0,9432	-0,0092
Lar Ougor O	Temn	0,0333	-0 6524	0,1620	0,4489	0,4939	0,6321	0,2858	0,4093	0,3941	0,0270	0.3527	0,0132	0,0224	-0,4208	0,3824	0,9589	0,9200	-0.9432	- 0 1018	0,1018	0,4038
chart chart <th>Zn**</th> <th>0 9074</th> <th>-0 5016</th> <th>0.0398</th> <th>0.9975</th> <th>0,7143</th> <th>0.9658</th> <th>0.9861</th> <th>0.9222</th> <th>0,7922</th> <th>0,9038</th> <th>0.8593</th> <th>0.6496</th> <th>0.9539</th> <th>0,7000</th> <th>0.9953</th> <th>0.5606</th> <th>0.2807</th> <th>-0.6692</th> <th>0.4038</th> <th>0 7588</th> <th>-</th>	Zn**	0 9074	-0 5016	0.0398	0.9975	0,7143	0.9658	0.9861	0.9222	0,7922	0,9038	0.8593	0.6496	0.9539	0,7000	0.9953	0.5606	0.2807	-0.6692	0.4038	0 7588	-
H_ASQ . <th>Cophenetis</th> <th>che Korrel H.AsO.</th> <th>lation Br⁻</th> <th>Ca⁴⁺</th> <th>Cd²⁺</th> <th>CI -</th> <th>Co²⁺</th> <th>Cu²⁺</th> <th>F.</th> <th>K⁺</th> <th>IF</th> <th>Мд²⁺</th> <th>Mn²⁺</th> <th>Na⁺</th> <th>Nds</th> <th>Ni⁴⁺</th> <th>NO.⁺</th> <th>Pb⁴⁺</th> <th>nH</th> <th>SO <i>i</i>²⁻</th> <th>Temn</th> <th>Zn⁴⁺</th>	Cophenetis	che Korrel H.AsO.	lation Br ⁻	Ca⁴⁺	Cd²⁺	CI -	Co²⁺	Cu²⁺	F.	K⁺	IF	Мд²⁺	Mn²⁺	Na⁺	Nds	Ni⁴⁺	NO. ⁺	Pb⁴⁺	nH	SO <i>i</i> ²⁻	Temn	Zn⁴⁺
Br -0.6797 -0.5303 0.7408 -0.6797 -0.5303 0.7408 -0.6797 -0.5303 0.7408 -0.6488 0.9448 0.5448 0.9448 0.5448 0.9448 0.5448 0.9448 0.5448 0.9448 0.3503 0.3503 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.5033 <th>H.AsO.</th> <th>112/13/04</th> <th>-0.6797</th> <th>0 3503</th> <th>0.9186</th> <th>0 7408</th> <th>0.9468</th> <th>0.9186</th> <th>0 5448</th> <th>0.9576</th> <th>LF 0 7000</th> <th>0.5448</th> <th>0 5448</th> <th>0.9468</th> <th>-0.0335</th> <th>0.9186</th> <th>0 3503</th> <th>0 3503</th> <th>рп -0.6797</th> <th>0 3503</th> <th>0 7999</th> <th>0.9186</th>	H.AsO.	112/13/04	-0.6797	0 3503	0.9186	0 7408	0.9468	0.9186	0 5448	0.9576	LF 0 7000	0.5448	0 5448	0.9468	-0.0335	0.9186	0 3503	0 3503	рп -0.6797	0 3503	0 7999	0.9186
Ca* 0.6777 0.6777 0.6777 0.6777 0.6777 0.6777 0.6777 0.6777 0.6777 0.7583 0.9783 0.9797 0.6777 0.3503 0.7783 0.9778 0.9778 0.9778 0.9777 0.7583 0.3503 0.7578 0.9779 0.7583 0.9779 0.7583 0.9779 0.7583 0.9779 0.7583 0.9779 0.7583 0.9779 0.7583 0.9799 0.9797 C1 0.7408 0.6797 0.3503 0.7708 0.7408 0.7408 0.7408 0.7408 0.7408 0.7408 0.7408 0.9179 0.5448 0.5448 0.9448 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797 0.3503 0.6797	Br	-0 6797	-	-0 6797	-0.6797	-0 6797	-0 6797	-0.6797	-0 6797	-0.6797	-0.6797	-0 6797	-0 6797	-0.6797	-0.6797	-0 6797	-0 6797	-0.6797	0.8012	-0 6797	-0.6797	-0.6797
Cd** 0,9186 -0.6797 0,3503 - 0,7408 0,9186 0,7999 0,5448 0,5448 0,9186 -0,0335 0,9858 0,3503 0,3503 -0,6797 0,3503 0,7099 0,9975 C1 0,7408 -0,6797 0,3503 0,7408 0,7408 0,7408 0,5448 0,7408 0,7408 0,3503 0,9186 0,3503 0,3503 -0,6797 0,3503 0,7408 0,7408 0,7408 0,7408 0,7408 0,7408 0,7408 0,0335 0,9186 0,3503 0,3503 -0,6797 0,3503 0,7499 0,9186 Cu** 0,9186 0,6797 0,3503 0,9186 0,7408 0,5448 0,946 0,4355 0,9186 0,3503 0,6797 0,3503 0,6797 0,3503 0,7999 0,9888 F* 0,5448 0,6797 0,3503 0,7408 0,5448 0,5448 0,9468 0,4355 0,9186 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,5448 0,7999 0,5448 0,448 0,448 0,448	Ca⁺⁺	0,3503	-0,6797	-	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	-0,0335	0,3503	0,7583	0,9370	-0,6797	0,7583	0,3503	0,3503
C1 0,7408 -0,6797 0,3503 0,7408 0,7408	Cd⁴⁺	0,9186	-0,6797	0,3503	-	0,7408	0,9186	0,9858	0,5448	0,9186	0,7999	0,5448	0,5448	0,9186	-0,0335	0,9858	0,3503	0,3503	-0,6797	0,3503	0,7999	0,9975
Co 0,9468 -0,6797 0,3503 0,9186 0,7408 - 0,9186 0,548 0,9186 -0,0335 0,9186 0,3503 0,6797 0,3503 0,6797 0,3503 0,7999 0,9186 Cu ²⁺ 0,9186 -0,6797 0,3503 0,9888 0,7408 0,9186 0,7498 0,5448 0,9186 -0,0335 0,987 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,7999 0,9888 K' 0,9576 -0,6797 0,3503 0,7408 0,7408 0,5448 0,5448 0,9847 0,9276 0,5448 0,0353 0,5303 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 <t< th=""><th>Cl ·</th><th>0,7408</th><th>-0,6797</th><th>0,3503</th><th>0,7408</th><th>_</th><th>0,7408</th><th>0,7408</th><th>0,5448</th><th>0,7408</th><th>0,7408</th><th>0,5448</th><th>0,5448</th><th>0,7408</th><th>-0,0335</th><th>0,7408</th><th>0,3503</th><th>0,3503</th><th>-0,6797</th><th>0,3503</th><th>0,7408</th><th>0,7408</th></t<>	Cl ·	0,7408	-0,6797	0,3503	0,7408	_	0,7408	0,7408	0,5448	0,7408	0,7408	0,5448	0,5448	0,7408	-0,0335	0,7408	0,3503	0,3503	-0,6797	0,3503	0,7408	0,7408
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Co**	0,9468	-0,6797	0,3503	0,9186	0,7408	-	0,9186	0,5448		0,7999	0,5448	0,5448	0,9810	-0,0335	0,9186	0,3503	0,3503	-0,6797	0,3503	0,7999	0,9186
F^{-} 0,5448 -0,6797 0,3503 0,5448 0,5448 0,9276 0,5448 -0,0335 0,5448 0,3503 -0,6797 0,3503 0,5448 0,5448 K^{+} 0,9576 -0,6797 0,3503 0,7408 0,9468 0,5448 0,9468 -0,0335 0,9186 0,3503 -0,6797 0,3503 0,7999 0,9186 LF 0,7999 -0,6797 0,3503 0,5448 0,5448 0,7999 -0,5448 0,7999 -0,0335 0,7999 0,3503 -0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,7999 0,9186 Mn^{**} 0,5448 -0,6797 0,3503 0,5448 0,9468 0,7999 0,5448 0,448 0,7999 0,5448 0,7999 0,5448 0,5448 0,9468 0,7999 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 </th <th>Cu²⁺</th> <th>0,9186</th> <th>-0,6797</th> <th>0,3503</th> <th>0,9858</th> <th>0,7408</th> <th>0,9186</th> <th>-</th> <th>0,5448</th> <th>0,9186</th> <th>0,7999</th> <th>0,5448</th> <th>0,5448</th> <th>0,9186</th> <th>-0,0335</th> <th>0,9897</th> <th>0,3503</th> <th>0,3503</th> <th>-0,6797</th> <th>0,3503</th> <th>0,7999</th> <th>0,9858</th>	Cu ²⁺	0,9186	-0,6797	0,3503	0,9858	0,7408	0,9186	-	0,5448	0,9186	0,7999	0,5448	0,5448	0,9186	-0,0335	0,9897	0,3503	0,3503	-0,6797	0,3503	0,7999	0,9858
K* 0,9576 -0,6797 0,3503 0,9186 0,7408 0,9468 0,5448 0,9468 -0,0335 0,9186 0,3503 -0,6797 0,3503 0,6797 0,3503 0,7999 0,9186 LF 0,7999 -0,6797 0,3503 0,7498 0,7999 0,5448 0,7999 -0,0335 0,7999 0,3503 -0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,5448 0,448 Ma* 0,9468 -0,6797 0,5448 0,5448 0,9468 0,7999 0,5448 0,9165 0,5453 0,5453 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 <	F ·	0,5448	-0,6797	0,3503	0,5448	0,5448	0,5448	0,5448	-	0,5448	0,5448	0,9847	0,9276	0,5448	-0,0335	0,5448	0,3503	0,3503	-0,6797	0,3503	0,5448	0,5448
LF 0,7999 -0,6797 0,3503 0,7999 0,7408 0,7999 0,5448 0,7999 -0,0335 0,7999 0,3503 0,6797 0,3503 0,9231 0,7999 Mg ^{**} 0,5448 -0,6797 0,3503 0,5448	\mathbf{K}^{+}	0,9576	-0,6797	0,3503	0,9186	0,7408	0,9468	0,9186	0,5448	-	0,7999	0,5448	0,5448	0,9468	-0,0335	0,9186	0,3503	0,3503	-0,6797	0,3503	0,7999	0,9186
Mg ⁻ 0,5448 -0,6797 0,3503 0,5448 0,5448 0,6797 0,3503 0,6797 0,3503 0,6797 0,3503 0,5448 0,5448 0,6797 0,3503 0,6797 0,3503 0,5448 0,5448 0,6797 0,3503 0,6797 0,3503 0,5448 0,5448 0,5448 0,6797 0,3503 0,5797 0,3503 0,5448 0,5448 0,5448 0,5448 0,5448 0,3503 0,5448 0,3503 0,5303 -0,6797 0,3503 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,5448 0,3503 0,5133 -0,6797 0,3503 0,6797 0,3503 0,5448 0,5448 0,9186 0,918	LF	0,7999	-0,6797	0,3503	0,7999	0,7408	0,7999	0,7999	0,5448	0,7999	-	0,5448	0,5448	0,7999	-0,0335	0,7999	0,3503	0,3503	-0,6797	0,3503	0,9231	0,7999
Mn 0,5448 -0,6797 0,3503 0,5448 0,5448 0,9276 0,5448 0,9276 0,5448 0,9276 - 0,5448 -0,0335 0,5448 0,3503 -0,6797 0,3503 -0,6797 0,3503 0,5448 0,5448 0,9276 - 0,5448 0,0335 0,0335 0,3503 -0,6797 0,3503 0,6797 0,3503 0,5448 0,5448 0,9276 - 0,5448 0,9135 0,3503 0,6797 0,3503 0,6797 0,3503 0,7099 0,9186 Nds -0,0335 -0,6797 0,3503 -0,0335	Mg Ma 41	0,5448	-0,6797	0,3503	0,5448	0,5448	0,5448	0,5448	0,9847	0,5448	0,5448	-	0,9276	0,5448	-0,0335	0,5448	0,3503	0,3503	-0,6797	0,3503	0,5448	0,5448
Na 0.9468 -0.6797 0.3503 0.9186 0.7408 0.9186 0.9488 0.7999 0.5448 0.7499 0.5448 0.5448 - -0.0335 0.9186 0.3503 0.6797 0.3503 0.6797 0.3503 0.7999 0.9186 Nds -0.0335 -0.6797 0.0335 -0.0350 -0.3503	NIN N +	0,5448	-0,6797	0,3503	0,5448	0,5448	0,5448	0,5448	0,9276	0,5448	0,5448	0,9276	-	0,5448	-0,0335	0,5448	0,3503	0,3503	-0,6797	0,3503	0,5448	0,5448
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Na	0,9468	-0,6797	0,3503	0,9186	0,7408	0,9810	0,9186	0,5448	0,9468	0,7999	0,5448	0,5448	-	-0,0335	0,9186	0,3503	0,3503	-0,6797	0,3503	0,7999	0,9186
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nds	-0,0335	-0,6/9/	-0,0335	-0,0335	-0,0335	-0,0335	-0,0335	-0,0335	-0,0335	-0,0335	-0,0335	-0,0335	-0,0335	-	-0,0335	-0,0335	-0,0335	-0,6/9/	-0,0335	-0,0335	-0,0335
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NO .	0,9186	-0,6/9/	0,3503	0,9858	0,7408	0,9186	0,9897	0,5448	0,9186	0,7999	0,5448	0,5448	0,9186	-0,0335	-	0,3503	0,3503	-0,6/9/	0,3503	0,7999	0,9858
$ \mathbf{P} \mathbf{F} = -0.6797 0.8012 -0.6797 -0$	Ph ²⁺	0,3503	-0,0797	0,7383	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	0,3503	-0,0335	0,3503		0,7585	-0,0797	0,9389	0,3503	0,3503
$ \begin{array}{c} \mathbf{SO}_{4}^{22} & 0,3503 & -0,6797 & 0,7583 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,3503 & 0,0350 & 0,0597 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & - & 0,0797 & 0,0700 & 0,0797 & 0,0700 & 0,000 &$	ոս	-0 6797	-0,0/9/	-0.6707	-0 6707	-0 6707	-0 6707	-0 6797	-0 6797	-0.6797	-0 6797	-0 6797	-0.6707	-0.6797	-0,0333	-0.6797	0,1383	-0.6707	-0,0/9/	-0 6797	-0 6797	-0.6707
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SO ² .	0.3503	-0.6797	0.7583	0.3503	0.3503	0.3503	0.3503	0.3503	0.3503	0.3503	0.3503	0.3503	0.3503	-0.0335	0.3503	0.9589	0.7583	- -0.6797	-0,0797	0.3503	0.3503
Zn^{2+} 0,9186 -0,6797 0,3503 0,9975 0,7408 0,9186 0,9858 0,5448 0,9186 0,7999 0,5448 0,5448 0,9186 -0,0335 0,9858 0,3503 0,3503 -0,6797 0,3503 0,7999 -	Temp	0.7999	-0.6797	0.3503	0.7999	0,7408	0.7999	0.7999	0.5448	0.7999	0.9231	0.5448	0.5448	0.7999	-0.0335	0.7999	0.3503	0.3503	-0.6797	0.3503	-	0,7999
	Zn ²⁺	0,9186	-0,6797	0,3503	0,9975	0,7408	0,9186	0,9858	0,5448	0,9186	0,7999	0,5448	0,5448	0,9186	-0,0335	0,9858	0,3503	0,3503	-0,6797	0,3503	0,7999	-

Anhang 12: Korrelationsmatrix für das Schwelguteluat und hierarchische Clusteranalyse

1. Iterationsschritt

	H ₂ AsO ₄	Br'/pH	Ca ⁺⁺ /Pb ⁺	°Cd ² */Zn ² *	CI -	C o²*/Na*	Cu ²⁺ /Ni ²⁺	\mathbf{K}^{+}	LF	Mg ²⁺ /F	Mn⁴⁺	Nds	NO ₃ /SO ₄ ²	Temp
H ₂ AsO ₄	-	-0,4386	0,5261	0,9184	0,8027	0,9441	0,8761	0,9576	0,8145	0,7390	0,4786	0,3983	0,6583	0,8024
Br'/pH	-0,4386	-	0,3235	-0,5734	-0,3737	-0,3925	-0,6254	-0,4372	-0,7739	-0,2178	0,0697	-0,9137	0,3230	-0,7978
$C a^{2+}/Pb^{2+}$	0,5261	0,3235	-	0,1848	0,3302	0,3548	0,1107	0,4024	-0,0106	0,0889	0,0762	-0,3564	0,7583	0,1693
Cd ²⁺ /Zn ²⁺	0,9184	-0,5734	0,1848	-	0,7353	0,9663	0,9858	0,9178	0,8981	0,8919	0,6469	0,5611	0,5019	0,7640
CI.	0,8027	-0,3737	0,3302	0,7353	-	0,7833	0,6364	0,9272	0,7087	0,7650	0,3512	0,1863	0,5163	0,7445
Co ²⁺ /Na ⁺	0,9441	-0,3925	0,3548	0,9663	0,7833	-	0,9263	0,9496	0,7710	0,9204	0,7110	0,3552	0,6818	0,6780
Cu ²⁺ /Ni ²⁺	0,8761	-0,6254	0,1107	0,9858	0,6364	0,9263	-	0,8517	0,9292	0,8590	0,6215	0,6483	0,4149	0,7529
\mathbf{K}^{+}	0,9576	-0,4372	0,4024	0,9178	0,9272	0,9496	0,8517	-	0,8026	0,8343	0,5304	0,3347	0,6332	0,7922
LF	0,8145	-0,7739	-0,0106	0,8981	0,7087	0,7710	0,9292	0,8026	-	0,6023	0,3188	0,8598	0,0902	0,9231
Mg ²⁺ /F	0,7390	-0,2178	0,0889	0,8919	0,7650	0,9204	0,8590	0,8343	0,6023	-	0,9276	0,2425	0,6165	0,3474
Mn ²⁺	0,4786	0,0697	0,0762	0,6469	0,3512	0,7110	0,6215	0,5304	0,3188	0,9276	-	-0,0563	0,6638	0,0132
Nds	0,3983	-0,9137	-0,3564	0,5611	0,1863	0,3552	0,6483	0,3347	0,8598	0,2425	-0,0563	-	-0,3734	0,7068
NO_3 / SO_4^{2}	0,6583	0,3230	0,7583	0,5019	0,5163	0,6818	0,4149	0,6332	0,0902	0,6165	0,6638	-0,3734	-	0,1138
Temp	0,8024	-0,7978	0,1693	0,7640	0,7445	0,6780	0,7529	0,7922	0,9231	0,3474	0,0132	0,7068	0,1138	-

2. Iterationsschritt

\mathbf{H}_{2}	AsO ₄ '/K ⁺	Br7pH	C a ²⁺ /Pb ²⁺ /NO ₃ /SO ₄ ²⁻	Cd**/Zn**/Cu**/Ni**	CI -	Co ^{**} /Na [*]	Mg ^{**} /F [*] /Mn ^{**}	Nds	Temp/LF
H ₂ AsO ₄ ⁻ /K ⁺	-	-0,4379	0,5550	0,8910	0,8650	0,9468	0,6456	0,3665	0,8029
Br/pH	-0,4379	-	0,3233	-0,5994	-0,3737	-0,3925	-0,0741	-0,9137	-0,7859
$Ca^{2+}/Pb^{2+}/NO_{3}/SO_{4}^{2-}$	0,5550	0,3233	-	0,3031	0,4233	0,5183	0,3613	-0,3649	0,0907
Cd ²⁺ /Zn ²⁺ /Cu ²⁺ /Ni ²⁺	0,8910	-0,5994	0,3031	-	0,6858	0,9463	0,7548	0,6047	0,8361
CL	0,8650	-0,3737	0,4233	0,6858	-	0,7833	0,5581	0,1863	0,7266
Co ²⁺ /Na ⁺	0,9468	-0,3925	0,5183	0,9463	0,7833	-	0,8157	0,3552	0,7245
Mg ^{**} /ŀ [*] /Mn ^{**}	0,6456	-0,0741	0,3613	0,7548	0,5581	0,8157	-	0,0931	0,3204
Nds	0,3665	-0,9137	-0,3649	0,6047	0,1863	0,3552	0,0931	-	0,7833
Temp/LF	0,8029	-0,7859	0,0907	0,8361	0,7266	0,7245	0,3204	0,7833	-

H ₂ AsO ₄ /K ⁺ /	Co ²⁺ /Na ⁺	Br7pH	Ca ²⁺ /Pb ²⁺ /NO ₃ ⁻ /SO ₄ ²⁻	Cd**/Zn**/Cu**/Ni**	CI ⁻	Mg**/F/Mn**	Nds	Temp/LF
H ₂ AsO ₄ ⁻ /K ⁺ /Co ²⁺ /Na ⁺	-	-0,4152	0,5366	0,9186	0,8241	0,7306	0,3608	0,7637
Br7/pH	-0,4152	-	0,3233	-0,5994	-0,3737	-0,0741	-0,9137	-0,7859
Ca ²⁺ /Pb ²⁺ /NO ₃ /SO ₄ ²⁻	0,5366	0,3233	-	0,3031	0,4233	0,3613	-0,3649	0,0907
Cd ²⁺ /Zn ²⁺ /Cu ²⁺ /Ni ²⁺	0,9186	-0,5994	0,3031	-	0,6858	0,7548	0,6047	0,8361
CL	0,8241	-0,3737	0,4233	0,6858	-	0,5581	0,1863	0,7266
Mg ²⁺ /F'/Mn ²⁺	0,7306	-0,0741	0,3613	0,7548	0,5581	-	0,0931	0,3204
Nds	0,3608	-0,9137	-0,3649	0,6047	0,1863	0,0931	-	0,7833
Temp/LF	0,7637	-0,7859	0,0907	0,8361	0,7266	0,3204	0,7833	-

Anhang 12: Korrelationsmatrix für das Schwelguteluat und hierarchische Clusteranalyse

4. Iterationsschritt							
H ₂ AsO ₄ ⁻ /K ⁺ /Co ²⁺ /Na ⁺ /Cd ²⁺ /2	Zn ²⁺ /Cu ²⁺ /Ni ²⁺	Br7pH	Ca ²⁺ /Pb ²⁺ /NO ₃ ⁻ /S	CI -	Mg ²⁺ /F/Mn ²⁺	Nds	Temp/LF
H ₂ AsO ₄ ⁻ /K ⁺ /Co ²⁺ /Na ⁺ /Cd ²⁺ /Zn ²⁺ /Cu ²⁺ /Ni ²⁺	-	-0,5073	0,4199	0,7550	0,7427	0,4828	0,7999
Br/pH	-0,5073	-	-0,5994	-0,3737	-0,0741	-0,9137	-0,7859
$C a^{2+}/Pb^{2+}/NO_3/SO_4^{2-}$	0,4199	-0,5994	-	0,4233	0,3613	-0,3649	0,0907
Cl.	0,7550	-0,3737	0,4233	-	0,5581	0,1863	0,7266
Mg ²⁺ /F/Mn ²⁺	0,7427	-0,0741	0,3613	0,5581	-	0,0931	0,3204
Nds	0,4828	-0,9137	-0,3649	0,1863	0,0931	-	0,7833
Temp/LF	0,7999	-0,7859	0,0907	0,7266	0,3204	0,7833	-
5. Iterationsschritt							
$H_2AsO_4/K^+/Co^{2+}/Na^+/Cd^{2+}$	/Zn ²⁺ /Cu ²⁺ /Ni ²⁻	+/Temp/LF	Br7pH	Ca ²⁺ /Pb ²⁺ /NO ₃ '/SO ₄ ²⁻	CI ·	Mg ²⁺ /F/Mn ²⁺	Nds
H ₂ AsO ₄ /K ⁺ /Co ²⁺ /Na ⁺ /Cd ²⁺ /Zn ²⁺ /Cu ²⁺	/Ni ²⁺ /Temp/LF	-	-0,6466	0,2553	0,7408	0,5316	0,6330
	Br⁻/pH	-0,6466	-	-0,5994	-0,3737	-0,0741	-0,9137
Ca ²⁺ /P	b ²⁺ /NO ₃ ⁻ /SO ₄ ²⁻	0,2553	-0,5994	-	0,4233	0,3613	-0,3649
	CI -	0,7408	-0,3737	0,4233	-	0,5581	0,1863
	Mg ²⁺ /F/Mn ²⁺	0,5316	-0,0741	0,3613	0,5581	-	0,0931
	Nds	0,6330	-0,9137	-0,3649	0,1863	0,0931	-
	2.24.02.44.0.24.0	- 2410 241		D ' II		M-++/ T */M-+++	
6. Iterationssel	r@ft/Na'/Cd ^{2*} /Z		Ni ^{2*} /Temp/LF/CI [*]	BF/pH	$Ca^{2}/Pb^{2}/NO_{3}/SO_{4}^{2}$		Nds
$H_2AsO_4/K^2/Co^2/Na^2/Cd^2/Zn$	-/Cu ²⁷ /Ni ²⁷ /Te	mp/LF/Cl	-	-0,5101	0,3393	0,5448	0,4097
	C 2+ (D) 2+ 0		-0,5101	-	-0,5994	-0,0741	-0,9137
		$10_3/50_4^{-1}$	0,3393	-0,5994	-	0,3613	-0,3649
	Mg	g ⁻ /F/Mn ⁻	0,5448	-0,0741	0,3613	-	0,1863
		Nds	0,4097	-0,9137	-0,3649	0,1863	-
7.	Iterationsschu	ritt					
	H ₂ AsO ₄ ⁻ /K ⁺	/Co ²⁺ /Na ⁺ /	'Cd ²⁺ /Zn ²⁺ /Cu ²⁺ /N	li ²⁺ /Temp/LF/Cl ⁻ /Mg ²⁺ /F ⁻ /Mn ²⁺	Br/pH	Ca ²⁺ /Pb ²⁺ /NO ₃ /SO ₄ ²⁻	Nds
H ₂ AsO ₄ /K ⁺ /Co ²⁺ /Na ⁺ /Cd ²⁺	/Zn ²⁺ /Cu ²⁺ /Ni ²⁺	/Temp/LF	Cl'/Mg ²⁺ /F'/Mn ²⁺	-	-0,2921	0,3503	0,2980
			Br/pH	-0,2921	-	-0,5994	-0,9137
		Ca²	⁺ /Pb ²⁺ /NO ₃ ⁻ /SO ₄ ²⁻	0,3503	-0,5994	-	-0,3649
			Nds	0,2980	-0,9137	-0,3649	-
8.	Iterationsschi	ritt					
	H ₂ As	60₄ ⁻ /K ⁺ /Co	o ²⁺ /Na ⁺ /Cd ²⁺ /Zn ²⁺ /	Cu ²⁺ /Ni ²⁺ /Temp/LF/Cl ⁻ /Mg ²⁺ /F/	/Mn ²⁺ /Ca ²⁺ /Pb ²⁺ /NO ₃ ⁻ /SO ₄ ²⁻	Brī/pH	Nds
H ₂ AsO ₄ ^{-/} K ⁺ /Co ²⁺ /N	a ⁺ /Cd ²⁺ /Zn ²⁺ /C	²⁺ /Ni ²⁺ /T	emp/LF/Cl/Mg ²⁺ /	$F/Mn^{2+}/Ca^{2+}/Pb^{2+}/NO_{3}/SO_{4}^{2-}$	-	-0,4457	-0,0335
				Br'/pH	-0,4457	-	-0,9137
				Nds	-0,0335	-0,9137	-
		0.1					
		9. Iteratio	onsschritt				
			H.As	$O^{-1}K^{+1}Co^{2+1}No^{+1}Cd^{2+1}Zn^{2+1}Cu^{2+1}$	*/Ni ²⁺ /Temp/I_E/Cl ⁻ /Mg ²⁺ /E ⁻ /M	n ²⁺ /Ca ²⁺ /Ph ²⁺ /NO ⁻ /SO ²⁻ /Nds	Br'/pH

ingriso 4 in you will you wi	· •
$H_2AsO_4'/K^*/Co^{2+}/Na^+/Cd^{2+}/Zn^{2+}/Cu^{2+}/Ni^{2+}/Temp/LF/Cl'/Mg^{2+}/F/Mn^{2+}/Ca^{2+}/Pb^{2+}/NO_3'/SO_4^{2-}/Nds$	-0,6797
Br'/pH -0,6797	-

Anhang 13: Korrelationsmatrix für das Eluat aus den Grauen Bergen und hierarchische Clusteranalyse

1. Iterationsschritt

	C a ²⁺	CI ·	F.	\mathbf{K}^{+}	LF	Mg^{2+}	Na^+	Nds	NO ₃ [·]	pН	SO ₄ ²⁻	Temp
C a ²⁺	-	0,7816	-0,8552	0,7661	0,7298	0,9786	0,8224	0,0138	0,8620	-0,6288	0,9629	0,4091
CI .	0,7816	-	-0,6324	0,9792	0,7696	0,6496	0,9962	0,2033	0,9703	-0,3447	0,6536	0,6382
F.	-0,8552	-0,6324	-	-0,5479	-0,4649	-0,8900	-0,6605	-0,2289	-0,6354	0,3701	-0,8858	-0,2403
\mathbf{K}^{+}	0,7661	0,9792	-0,5479	-	0,8711	0,6270	0,9782	0,1898	0,9820	-0,4677	0,6540	0,7393
LF	0,7298	0,7696	-0,4649	0,8711	-	0,6393	0,7868	0,3177	0,8636	-0,7815	0,7258	0,8530
Mg^{2+}	0,9786	0,6496	-0,8900	0,6270	0,6393	-	0,6999	0,0726	0,7467	-0,6473	0,9836	0,3128
Na^+	0,8224	0,9962	-0,6605	0,9782	0,7868	0,6999	-	0,3334	0,9840	-0,4069	0,7018	0,6456
Nds	0,0138	0,2033	-0,2289	0,1898	0,3177	0,0726	0,3334	-	0,1977	-0,4581	0,2171	0,7068
NO ₃	0,8620	0,9703	-0,6354	0,9820	0,8636	0,7467	0,9840	0,1977	-	-0,5461	0,7570	0,6913
pН	-0,6288	-0,3447	0,3701	-0,4677	-0,7815	-0,6473	-0,4069	-0,4581	-0,5461	-	-0,7242	-0,6740
SO ₄ ²⁻	0,9629	0,6536	-0,8858	0,6540	0,7258	0,9836	0,7018	0,2171	0,7570	-0,7242	-	0,4321
Temp	0,4091	0,6382	-0,2403	0,7393	0,8530	0,3128	0,6456	0,7068	0,6913	-0,6740	0,4321	-

	$Ca^{2\scriptscriptstyle +}$	Na'/Cl '	F 7рН	\mathbf{K}^{+}	LF	Mg ²⁺ /SO ₄	Nds	NO ₃ .	Temp
Ca ²⁺	-	0,8020	-0,7420	0,7661	0,7298	0,9708	0,0138	0,8620	0,4091
Na7/Cl	0,8020	-	-0,5111	0,9787	0,7782	0,6762	0,2684	0,9772	0,6419
F /pH	-0,7420	-0,5111	-	-0,5078	-0,6232	-0,7868	-0,3435	-0,5908	-0,4572
\mathbf{K}^{+}	0,7661	0,9787	-0,5078	-	0,8711	0,6405	0,1898	0,9820	0,7393
LF	0,7298	0,7782	-0,6232	0,8711		0,6826	0,3177	0,8636	0,8530
Mg ²⁺ /SO ₄ ²⁻	0,9708	0,6762	-0,7868	0,6405	0,6826	-	0,1449	0,7519	0,3725
Nds	0,0138	0,2684	-0,3435	0,1898	0,3177	0,1449	-	0,1977	0,7068
NO ₃	0,8620	0,9772	-0,5908	0,9820	0,8636	0,7519	0,1977	-	0,6913
Temp	0,4091	0,6419	-0,4572	0,7393	0,8530	0,3725	0,7068	0,6913	-

2. Iterationsschritt

C a ²⁺ /Mg ²⁻	⁺ /SO ₄ ²⁻	Na7/Cl	F 7рН	K ⁺ /NO ₃	LF	Nds	Temp
$C a^{2+}/Mg^{2+}/SO_4^{-2-}$	-	0,7391	-0,7644	0,7551	0,7062	0,0793	0,3908
Na/Cl ⁻	0,7391	-	-0,5111	0,9779	0,7782	0,2684	0,6419
F '/pH	-0,7644	-0,5111	-	-0,5493	-0,6232	-0,3435	-0,4572
K ⁺ /NO ₃	0,7551	0,9779	-0,5493	-	0,8674	0,1938	0,7153
LF	0,7062	0,7782	-0,6232	0,8674	-	0,3177	0,8530
Nds	0,0793	0,2684	-0,3435	0,1938	0,3177	-	0,3725
Temp	0,3908	0,6419	-0,4572	0,7153	0,8530	0,3725	-

Cophenetische Korrelation

Korrelationsmatrix

	C a ²⁺	CI ·	F.	\mathbf{K}^{+}	LF	Mg^{2+}	Na^+	Nds	NO ₃ .	pН	SO ₄ ²⁻	Temp
$C a^{2+}$	-	0,6478	-0,4967	0,6478	0,6478	0,9708	0,6478	0,1769	0,6478	-0,4967	0,9708	0,6478
CI .	0,6478	-	-0,4967	0,9779	0,7507	0,6478	0,9962	0,1769	0,9779	-0,4967	0,6478	0,7507
F.	-0,4967	-0,4967	-	-0,4967	-0,4967	-0,4967	-0,4967	-0,4967	-0,4967	0,3701	-0,4967	-0,4967
\mathbf{K}^{+}	0,6478	0,9779	-0,4967	-	0,7507	0,6478	0,9779	0,1769	0,9820	-0,4967	0,6478	0,7507
LF	0,6478	0,7507	-0,4967	0,7507	-	0,6478	0,7507	0,1769	0,7507	-0,4967	0,6478	0,8530
Mg^{2+}	0,9708	0,6478	-0,4967	0,6478	0,6478	-	0,6478	0,1769	0,6478	-0,4967	0,9836	0,6478
Na^+	0,6478	0,9962	-0,4967	0,9779	0,7507	0,6478	-	0,1769	0,9779	-0,4967	0,6478	0,7507
Nds	0,1769	0,1769	-0,4967	0,1769	0,1769	0,1769	0,1769	-	0,1769	-0,4967	0,1769	0,1769
NO ₃ ⁻	0,6478	0,9779	-0,4967	0,9820	0,7507	0,6478	0,9779	0,1769	-	-0,4967	0,6478	0,7507
pН	-0,4967	-0,4967	0,3701	-0,4967	-0,4967	-0,4967	-0,4967	-0,4967	-0,4967	-	-0,4967	-0,4967
SO 4 ²⁻	0,9708	0,6478	-0,4967	0,6478	0,6478	0,9836	0,6478	0,1769	0,6478	-0,4967	-	0,6478
Temp	0,6478	0,7507	-0,4967	0,7507	0,8530	0,7507	0,7507	0,1769	0,7507	-0,4967	0,6478	-

	Ca ²⁺ /	Mg ²⁺ /SO ₄ ²⁻	Na7/Cl 7/K7/NO3	F /pH	LF	Nds	Temp
Ca ²⁺ /Mg ²⁺ /SO	4 ²⁻	-	0,7471	-0,7644	0,7062	0,0793	0,3908
Na ⁻ /Cl ⁻ /K ⁻ /N	03.	0,7471	-	-0,5302	0,8228	0,2311	0,6786
F 7]	р Н	-0,7644	-0,5302	-	-0,6232	-0,3435	-0,4572
	LF	0,7062	0,8228	-0,6232	-	0,3177	0,8530
N	lds	0,0793	0,2311	-0,3435	0,3177	-	0,3725
Tei	mp	0,3908	0,6786	-0,4572	0,8530	0,3725	-

Anhang 13: Korrelationsmatrix für das Eluat aus den Grauen Bergen und hierarchische Clusteranalyse

4. Iterationsschritt

C a ²⁺ /Mg	g^{2+}/SO_4^{2-}	Na'/Cl '/K'/NO3'	F /pH	LF/Temp	Nds
Ca ²⁺ /Mg ²⁺ /SO ₄ ²⁻	-	0,7471	-0,7644	0,5485	0,0793
Na'/Cl '/K'/NO3'	0,7471	-	-0,5302	0,7507	0,2311
F ′/рН	-0,7644	-0,5302	-	-0,5402	-0,3435
LF/Temp	0,5485	0,7507	-0,5402	-	0,3177
Nds	0,0793	0,2311	-0,3435	0,3177	-

5. Iterationsschritt

C a ²⁺ /	C a ²⁺ /Mg ²⁺ /SO ₄ ²⁻		F ′∕рН	Nds
Ca ²⁺ /Mg ²⁺ /SO ₄ ²⁻	-	0,6478	-0,7644	0,0793
Na'/Cl '/K'/NO3'/LF/Temp	0,6478		-0,5352	0,2744
F /pH	-0,7644	-0,5352	-	-0,3435
Nds	0,0793	0,2744	-0,3435	-

6. Iterationsschritt

Na/Cl /K/NO ₃ /LF/Te	mp/Ca ²⁺ /Mg ²⁺ /SO ₄ ²⁻	F '/рН	Nds
Na'/Cl '/K'/NO ₃ '/LF/Temp/Ca ²⁺ /Mg ²⁺ /SO ₄ ²⁻	-	-0,6498	0,1769
F⁻/pH	-0,6498	-	-0,3435
Nds	0,1769	-0,3435	-

7. Iterationsschritt

Na ⁻ /Cl ⁻ /K ⁻ /NO ₃ ⁻ /LF/Temp/Ca ²⁺ /Mg ²⁺ /SO ₄ ⁻² /Nds	F /pH
Na/Cl /K/NO ₃ /LF/Temp/Ca ²⁺ /Mg ²⁺ /SO ₄ ²⁻ /Nds	-0,4967

F [≁]/**pH** -0,4967 -